|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省宁波市奉化区2022年中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    浙江省宁波市奉化区2022年中考数学考前最后一卷含解析01
    浙江省宁波市奉化区2022年中考数学考前最后一卷含解析02
    浙江省宁波市奉化区2022年中考数学考前最后一卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省宁波市奉化区2022年中考数学考前最后一卷含解析

    展开
    这是一份浙江省宁波市奉化区2022年中考数学考前最后一卷含解析,共19页。试卷主要包含了已知抛物线y=x2-2mx-4,下列运算结果为正数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )

    A.60海里 B.45海里 C.20海里 D.30海里
    2.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为(  )

    A. B. C.2 D.2
    3.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是(   )

    A.4 B.6 C.8 D.10
    4.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为(   )

    A. B. C. D.
    5.若关于x的不等式组无解,则m的取值范围(  )
    A.m>3 B.m<3 C.m≤3 D.m≥3
    6.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是(  )

    A. B.
    C. D.
    7.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为(  )
    A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)
    8.下列运算结果为正数的是( )
    A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
    9.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是(  )

    A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c
    10.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从
    点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为

    A. B. C. D.
    11.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )

    A.2 B.3 C.5 D.6
    12.二次函数的最大值为( )
    A.3 B.4
    C.5 D.6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.(题文)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.

    14.若|a|=2016,则a=___________.
    15.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).

    16.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB=___.

    17.以下两题任选一题作答:
    (1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是 8m,则乘电梯次点 B 到点 C 上升的高度 h 是_____m.

    (2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形.
    18.三角形的每条边的长都是方程的根,则三角形的周长是 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.
    据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?
    在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.
    20.(6分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.
    21.(6分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高
    (1)△ACD与△ABC相似吗?为什么?
    (2)AC2=AB•AD 成立吗?为什么?

    22.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
    每人销售件数
    1800
    510
    250
    210
    150
    120
    人数
    1
    1
    3
    5
    3
    2
    (1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.
    23.(8分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.

    (1)求证:OE=OF;
    (2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.
    24.(10分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB相交于点E.
    (1)求证:DB=DE;
    (2)若∠BDE=70°,求∠AOB的大小.

    25.(10分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.

    26.(12分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?

    27.(12分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
    (1)求证:AC是△BDE的外接圆的切线;
    (2)若AD=2,AE=6,求EC的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
    【详解】
    解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
    故AB=2AP=60(海里),
    则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
    故选:D.
    【点睛】
    此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
    2、D
    【解析】
    【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
    【详解】过A作AD⊥BC于D,

    ∵△ABC是等边三角形,
    ∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
    ∵AD⊥BC,
    ∴BD=CD=1,AD=BD=,
    ∴△ABC的面积为BC•AD==,
    S扇形BAC==,
    ∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
    故选D.
    【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
    3、B
    【解析】
    平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
    【详解】
    平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
    ∵OD⊥BC,BC⊥AB,
    ∴OD∥AB,
    又∵OC=OA,
    ∴OD是△ABC的中位线,
    ∴OD=AB=3,
    ∴DE=2OD=6.
    故选:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.
    4、A
    【解析】
    试题解析:连接OE,OF,ON,OG,

    在矩形ABCD中,
    ∵∠A=∠B=90°,CD=AB=4,
    ∵AD,AB,BC分别与⊙O相切于E,F,G三点,
    ∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
    ∴四边形AFOE,FBGO是正方形,
    ∴AF=BF=AE=BG=2,
    ∴DE=3,
    ∵DM是⊙O的切线,
    ∴DN=DE=3,MN=MG,
    ∴CM=5-2-MN=3-MN,
    在Rt△DMC中,DM2=CD2+CM2,
    ∴(3+NM)2=(3-NM)2+42,
    ∴NM=,
    ∴DM=3+=,
    故选B.
    考点:1.切线的性质;3.矩形的性质.
    5、C
    【解析】
    根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.
    【详解】

    由①得:x>2+m,
    由②得:x<2m﹣1,
    ∵不等式组无解,
    ∴2+m≥2m﹣1,
    ∴m≤3,
    故选C.
    【点睛】
    考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.
    6、B
    【解析】
    找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
    【详解】
    解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.
    故选:B.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    7、C
    【解析】
    试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.
    考点:二次函数的性质.
    8、B
    【解析】
    分别根据有理数的加、减、乘、除运算法则计算可得.
    【详解】
    解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
    B、1﹣(﹣2)=1+2=3,结果为正数;
    C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
    D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
    故选B.
    【点睛】
    本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
    9、A
    【解析】
    根据数轴上点的位置确定出a,b,c的范围,判断即可.
    【详解】
    由数轴上点的位置得:a<b<0<c,
    ∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.
    故选A.
    【点睛】
    考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.
    10、B
    【解析】
    分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:
    ∵等边三角形ABC的边长为3,N为AC的三等分点,
    ∴AN=1。∴当点M位于点A处时,x=0,y=1。
    ①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;
    ②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。
    故选B。
    11、C
    【解析】
    试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.

    考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
    12、C
    【解析】
    试题分析:先利用配方法得到y=﹣(x﹣1)2+1,然后根据二次函数的最值问题求解.
    解:y=﹣(x﹣1)2+1,
    ∵a=﹣1<0,
    ∴当x=1时,y有最大值,最大值为1.
    故选C.
    考点:二次函数的最值.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、12
    【解析】
    根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.
    14、±1
    【解析】
    试题分析:根据零指数幂的性质(),可知|a|=1,座椅可知a=±1.
    15、π+4
    【解析】
    根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是2.
    解:根据图形中正方形的性质,得
    ∠AOB=90°,OA=OB=2.
    ∴扇形OAB的弧长等于π.
    16、1.
    【解析】
    在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.
    【详解】
    解:Rt△ABC中,∵BC=4,tanA=


    故答案为1.
    【点睛】
    考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.
    17、4 8
    【解析】
    (1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;
    (2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
    故可列出方程求解.
    【详解】
    (1)∵∠ABC=150°,∴斜面BC的坡角为30°,
    ∴h==4m
    (2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
    依题意得
    解得n=8
    故为八边形.
    【点睛】
    此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.
    18、6或2或12
    【解析】
    首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.
    【详解】
    由方程,得=2或1.
    当三角形的三边是2,2,2时,则周长是6;
    当三角形的三边是1,1,1时,则周长是12;
    当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;
    当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.
    综上所述此三角形的周长是6或12或2.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.
    【解析】
    (1)设每盒售价应为x元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;
    (2)根据总利润=每盒利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.
    【详解】
    解:设每盒售价元.
    依题意得:
    解得:
    答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元
    依题意:
    令:
    化简:
    解得:(舍)

    答:的值为.
    【点睛】
    考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.
    20、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4 =x2﹣1.
    当x=﹣时,原式=(﹣)2﹣1=3﹣1=﹣2.
    【解析】
    应用整式的混合运算法则进行化简,最后代入x值求值.
    21、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.
    【解析】
    (1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;
    (2)根据相似三角形的性质得出比例式,再进行变形即可.
    【详解】
    解:(1)△ACD 与△ABC相似,
    理由是:∵在 Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,
    ∴∠ADC=∠ACB=90°,
    ∵∠A=∠A,
    ∴△ACD∽∠ABC;
    (2)AC2=AB•AD成立,理由是:
    ∵△ACD∽∠ABC,
    ∴=,
    ∴AC2=AB•AD.
    【点睛】
    本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.
    22、(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件
    【解析】
    试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;
    (2)把月销售额320件与大部分员工的工资比较即可判断.
    (1)平均数件,
    ∵最中间的数据为210,
    ∴这组数据的中位数为210件,
    ∵210是这组数据中出现次数最多的数据,
    ∴众数为210件;
    (2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.
    考点:本题考查的是平均数、众数和中位数
    点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    23、(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.
    【解析】
    (1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;
    (2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴OA=OC,AB∥CD,OB=OD,
    ∴∠OAE=∠OCF,
    在△OAE和△OCF中,

    ∴△AOE≌△COF(ASA),
    ∴OE=OF;
    (2)∵OE=OF,OB=OD,
    ∴四边形DEBF是平行四边形,
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴四边形DEBF是矩形,
    ∴BD=EF,
    ∴OD=OB=OE=OF=BD,
    ∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE.
    【点睛】
    本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.
    24、(1)证明见解析;(2)110°.
    【解析】
    分析:(1)欲证明DB=DE,只要证明∠BED=∠ABD即可;
    (2)因为△OAB是等腰三角形,属于只要求出∠OBA即可解决问题;
    详解:(1)证明:∵DC⊥OA,
    ∴∠OAB+∠CEA=90°,
    ∵BD为切线,
    ∴OB⊥BD,
    ∴∠OBA+∠ABD=90°,
    ∵OA=OB,
    ∴∠OAB=∠OBA,
    ∴∠CEA=∠ABD,
    ∵∠CEA=∠BED,
    ∴∠BED=∠ABD,
    ∴DE=DB.
    (2)∵DE=DB,∠BDE=70°,
    ∴∠BED=∠ABD=55°,
    ∵BD为切线,
    ∴OB⊥BD,
    ∴∠OBA=35°,
    ∵OA=OB,
    ∴∠OBA=180°-2×35°=110°.
    点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    25、
    【解析】
    画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.
    【详解】
    画树状图为:

    共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,
    所以两次抽取的牌上的数字都是偶数的概率==.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    26、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.
    【解析】
    (1)将函数解析式配方成顶点式可得最值;
    (1)画图象可得t的取值.
    【详解】
    (1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,
    ∴当t=1时,h取得最大值10米;
    答:小球飞行时间是1s时,小球最高为10m;
    (1)如图,

    由题意得:15=10t﹣5t1,
    解得:t1=1,t1=3,
    由图象得:当1≤t≤3时,h≥15,
    则小球飞行时间1≤t≤3时,飞行高度不低于15m.
    【点睛】
    本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.
    27、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;
    (2)设⊙O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE∥BC得,然后根据比例性质可计算出EC.
    试题解析:(1)证明:取BD的中点0,连结OE,如图,
    ∵DE⊥EB,
    ∴∠BED=90°,
    ∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,
    ∵BE平分∠ABC,
    ∴∠CBE=∠OBE,
    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∴∠EB=∠CBE,
    ∴OE∥BC,
    ∴∠AEO=∠C=90°,
    ∴OE⊥AE,
    ∴AC是△BDE的外接圆的切线;
    (2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,
    在Rt△AEO中,∵AE2+OE2=AO2,
    ∴62+r2=(r+2)2,解得r=2,
    ∵OE∥BC,
    ∴,即,
    ∴CE=1.

    考点:1、切线的判定;2、勾股定理

    相关试卷

    浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。

    2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析: 这是一份2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列判断错误的是等内容,欢迎下载使用。

    2022年浙江省宁波市奉化区溪口中学中考数学模试卷含解析: 这是一份2022年浙江省宁波市奉化区溪口中学中考数学模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么代数式的值为,如图,已知,,则的度数为,一、单选题,《语文课程标准》规定等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map