开学活动
搜索
    上传资料 赚现金

    枣庄市第三十二中学2022年中考联考数学试题含解析

    枣庄市第三十二中学2022年中考联考数学试题含解析第1页
    枣庄市第三十二中学2022年中考联考数学试题含解析第2页
    枣庄市第三十二中学2022年中考联考数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    枣庄市第三十二中学2022年中考联考数学试题含解析

    展开

    这是一份枣庄市第三十二中学2022年中考联考数学试题含解析,共22页。试卷主要包含了下列计算正确的是,下列计算正确的是.等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )
    A. B. C. D.
    2.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是( ).
    A. B.
    C. D.
    3.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为(  )

    A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
    4.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为( )

    A.32° B.30° C.26° D.13°
    5.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(  )

    A. B. C. D.
    6.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是(  )

    A. B. C. D.
    7.下列计算正确的是(  )
    A.﹣= B. =±2
    C.a6÷a2=a3 D.(﹣a2)3=﹣a6
    8.已知直线与直线的交点在第一象限,则的取值范围是( )
    A. B. C. D.
    9.下列计算正确的是(    ).
    A.(x+y)2=x2+y2 B.(-xy2)3=- x3y6
    C.x6÷x3=x2 D.=2
    10.若不等式组的整数解共有三个,则a的取值范围是(  )
    A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6
    二、填空题(共7小题,每小题3分,满分21分)
    11.因式分解:x2﹣10x+24=_____.
    12.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.

    13.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.
    14.如图,在四边形中,,,,,,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动.若,当__时,是等腰三角形.

    15.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为________.
    16.方程的解为__________.
    17.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
    三、解答题(共7小题,满分69分)
    18.(10分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.

    19.(5分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
    (1)求AB的长(精确到0.1米,参考数据:);
    (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

    20.(8分)用你发现的规律解答下列问题.



    ┅┅计算 .探究 .(用含有的式子表示)若的值为,求的值.
    21.(10分)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):


    (1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.
    (2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论:   .(写一条即可)
    (3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为   公里.(直接写出结果,精确到个位)
    22.(10分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)
    (1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)
    (2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
    (3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?

    23.(12分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.

    请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.
    24.(14分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
    (1)求抛物线的解析式和顶点坐标;
    (2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
    ①若B、C都在抛物线上,求m的值;
    ②若点C在第四象限,当AC2的值最小时,求m的值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:74300亿=7.43×1012,
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、B
    【解析】
    把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.
    【详解】
    解:∵y=x2+2x+3=(x+1)2+2,
    ∴原抛物线的顶点坐标为(-1,2),
    令x=0,则y=3,
    ∴抛物线与y轴的交点坐标为(0,3),
    ∵抛物线绕与y轴的交点旋转180°,
    ∴所得抛物线的顶点坐标为(1,4),
    ∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].
    故选:B.
    【点睛】
    本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.
    3、C
    【解析】
    根据题目数据求出函数解析式,根据二次函数的性质可得.
    【详解】
    根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
    得:
    解得:a=−0.2,b=1.5,c=−2,
    即p=−0.2t2+1.5t−2,
    当t=−=3.75时,p取得最大值,
    故选C.
    【点睛】
    本题考查了二次函数的应用,熟练掌握性质是解题的关键.
    4、A
    【解析】
    连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.
    【详解】
    连接OB,
    ∵AB与☉O相切于点B,
    ∴∠OBA=90°,
    ∵∠A=26°,
    ∴∠AOB=90°-26°=64°,
    ∵OB=OC,
    ∴∠C=∠OBC,
    ∴∠AOB=∠C+∠OBC=2∠C,
    ∴∠C=32°.

    故选A.
    【点睛】
    本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.
    5、B
    【解析】
    先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.
    【详解】
    ∵△DEF是△AEF翻折而成,
    ∴△DEF≌△AEF,∠A=∠EDF,
    ∵△ABC是等腰直角三角形,
    ∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,

    ∴∠BED=∠CDF,
    设CD=1,CF=x,则CA=CB=2,
    ∴DF=FA=2-x,
    ∴在Rt△CDF中,由勾股定理得,
    CF2+CD2=DF2,
    即x2+1=(2-x)2,
    解得:x=,
    ∴sin∠BED=sin∠CDF=.
    故选B.
    【点睛】
    本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
    6、C
    【解析】
    分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
    详解:∵OB=1,AB⊥OB,点A在函数 (x0)的图象上,
    ∴k=4,
    ∴反比例函数的解析式为,O1(3,0),
    ∵C1O1⊥x轴,
    ∴当x=3时,
    ∴P
    故选C.
    点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
    7、D
    【解析】
    根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.
    【详解】
    A. 不是同类二次根式,不能合并,故A选项错误;
    B.=2≠±2,故B选项错误;
    C. a6÷a2=a4≠a3,故C选项错误;
    D. (−a2)3=−a6,故D选项正确.
    故选D.
    【点睛】
    本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.
    8、C
    【解析】
    根据题意画出图形,利用数形结合,即可得出答案.
    【详解】
    根据题意,画出图形,如图:

    当时,两条直线无交点;
    当时,两条直线的交点在第一象限.
    故选:C.
    【点睛】
    本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
    9、D
    【解析】
    分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.
    详解:(x+y)2=x2+2xy+y2,A错误;
    (-xy2)3=-x3y6,B错误;
    x6÷x3=x3,C错误;
    ==2,D正确;
    故选D.
    点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.
    10、C
    【解析】
    首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
    【详解】
    解不等式组得:2<x≤a,
    ∵不等式组的整数解共有3个,
    ∴这3个是3,4,5,因而5≤a<1.
    故选C.
    【点睛】
    本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

    二、填空题(共7小题,每小题3分,满分21分)
    11、(x﹣4)(x﹣6)
    【解析】
    因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.
    【详解】
    x2﹣10x+24= x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)
    【点睛】
    本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.
    12、∠A=∠C或∠ADC=∠ABC
    【解析】
    本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.
    【详解】
    添加条件可以是:∠A=∠C或∠ADC=∠ABC.
    ∵添加∠A=∠C根据AAS判定△AOD≌△COB,
    添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,
    故填空答案:∠A=∠C或∠ADC=∠ABC.
    【点睛】
    本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.
    13、m>1
    【解析】
    试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
    试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
    联立两直线解析式得:,
    解得:,
    即交点坐标为(,),
    ∵交点在第一象限,
    ∴,
    解得:m>1.
    考点:一次函数图象与几何变换.
    14、或.
    【解析】
    根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,①当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;②当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t.
    【详解】
    解:由运动知,,,
    ,,
    ,,
    是等腰三角形,且,
    ①当时,过点P作PE⊥AD于点E

    点在的垂直平分线上, QE=,AE=BP



    ②当时,如图,过点作于,


    ,,

    四边形是矩形,
    ,,

    在中,,



    点在边上,不和重合,


    此种情况符合题意,
    即或时,是等腰三角形.
    故答案为:或.
    【点睛】
    此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键.
    15、a≥﹣1且a≠1
    【解析】
    利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣)≥1,然后求出两个不等式的公共部分即可.
    【详解】
    根据题意得a≠1且△=(﹣1)2﹣4a•(﹣)≥1,解得:a≥﹣1且a≠1.
    故答案为a≥﹣1且a≠1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
    16、
    【解析】
    两边同时乘,得到整式方程,解整式方程后进行检验即可.
    【详解】
    解:两边同时乘,得

    解得,
    检验:当时,≠0,
    所以x=1是原分式方程的根,
    故答案为:x=1.
    【点睛】
    本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
    17、或
    【解析】
    分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
    【详解】
    解:当0°<x°≤90°时,如图所示:连接OC,

    由圆周角定理得,∠BOC=2∠A=2x°,
    ∴∠DOC=180°-2x°,
    ∴∠OBC所对的劣弧长=,
    当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
    故答案为:或.
    【点睛】
    本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.

    三、解答题(共7小题,满分69分)
    18、证明见解析.
    【解析】
    【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.
    【详解】∵BE=CF,
    ∴BE+EF=CF+EF,
    ∴BF=CE,
    在△ABF和△DCE中

    ∴△ABF≌△DCE(SAS),
    ∴∠GEF=∠GFE,
    ∴EG=FG.
    【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
    19、(1)24.2米(2) 超速,理由见解析
    【解析】
    (1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
    (2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
    【详解】
    解:(1)由題意得,
    在Rt△ADC中,,
    在Rt△BDC中,,
    ∴AB=AD-BD=(米).
    (2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
    ∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
    ∵43.56千米/小时大于40千米/小时,
    ∴此校车在AB路段超速.
    20、解:(1);(2);(3)n=17.
    【解析】
    (1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.
    【详解】
    (1)原式=1−+−+−+−+−=1−=.
    故答案为;
    (2)原式=1−+−+−+…+−=1−=
    故答案为;
    (3) +++…+
    = (1−+−+−+…+−)
    =(1−)
    =
    =
    解得:n=17.
    考点:规律题.
    21、(1)见解析;(2)步行距离越大,燃烧脂肪越多;(3)1.
    【解析】
    (1)依据手机图片的中的数据,即可补全表格;
    (2)依据步行距离与燃烧脂肪情况,即可得出步行距离越大,燃烧脂肪越多;
    (3)步行距离和卡路里消耗数近似成正比例关系,即可预估她一天步行距离.
    【详解】
    解:(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;
    4月6日的步行数为15638,步行距离为1.0公里,卡路里消耗为234千卡,燃烧脂肪30克;
    (2)由图可得,步行距离越大,燃烧脂肪越多;
    故答案为:步行距离越大,燃烧脂肪越多;
    (3)由图可得,步行时每公里约消耗卡路里25千卡,故豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为1公里.
    故答案为:1.
    【点睛】
    本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
    22、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元
    【解析】
    (1)利用待定系数法可求出y与x以及z与x之间的函数关系式;
    (1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;
    (3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.
    【详解】
    (1)图①可得函数经过点(100,1000),
    设抛物线的解析式为y=ax1(a≠0),
    将点(100,1000)代入得:1000=10000a,
    解得:a=,
    故y与x之间的关系式为y=x1.
    图②可得:函数经过点(0,30)、(100,10),
    设z=kx+b,则,
    解得: ,
    故z与x之间的关系式为z=﹣x+30(0≤x≤100);
    (1)W=zx﹣y=﹣x1+30x﹣x1
    =﹣x1+30x
    =﹣(x1﹣150x)
    =﹣(x﹣75)1+1115,
    ∵﹣<0,
    ∴当x=75时,W有最大值1115,
    ∴年产量为75万件时毛利润最大,最大毛利润为1115万元;
    (3)令y=360,得x1=360,
    解得:x=±60(负值舍去),
    由图象可知,当0<y≤360时,0<x≤60,
    由W=﹣(x﹣75)1+1115的性质可知,
    当0<x≤60时,W随x的增大而增大,
    故当x=60时,W有最大值1080,
    答:今年最多可获得毛利润1080万元.
    【点睛】
    本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.
    23、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.
    【解析】
    试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;
    (2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;

    (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;
    (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.
    考点:①条形统计图;②扇形统计图.
    24、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
    【解析】
    分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
    详解:
    (1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
    ∴﹣4﹣8+c=0,即c=12,
    ∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
    则顶点坐标为(﹣2,16);
    (2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
    ∵点B关于原点的对称点为C,
    ∴C(﹣m,﹣n),
    ∵C落在抛物线上,
    ∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
    解得:﹣m2+4m+12=m2﹣4m﹣12,
    解得:m=2或m=﹣2;
    ②∵点C(﹣m,﹣n)在第四象限,
    ∴﹣m>0,﹣n<0,即m<0,n>0,
    ∵抛物线顶点坐标为(﹣2,16),
    ∴0<n≤16,
    ∵点B在抛物线上,
    ∴﹣m2﹣4m+12=n,
    ∴m2+4m=﹣n+12,
    ∵A(2,0),C(﹣m,﹣n),
    ∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
    当n=时,AC2有最小值,
    ∴﹣m2﹣4m+12=,
    解得:m=,
    ∵m<0,∴m=不合题意,舍去,
    则m的值为.
    点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.

    相关试卷

    2024年山东省枣庄市滕州市中考二模数学试题(含解析):

    这是一份2024年山东省枣庄市滕州市中考二模数学试题(含解析),共29页。

    山东省枣庄市第三十二中学2022年中考四模数学试题含解析:

    这是一份山东省枣庄市第三十二中学2022年中考四模数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,已知,如图,空心圆柱体的左视图是,我省2013年的快递业务量为1等内容,欢迎下载使用。

    山东省枣庄市第三十二中学2021-2022学年中考数学猜题卷含解析:

    这是一份山东省枣庄市第三十二中学2021-2022学年中考数学猜题卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,若分式有意义,则a的取值范围为,下列说法正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map