山东省枣庄市市中学区重点名校2022年十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为( )
A.50° B.40° C.30° D.25°
2.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )
A.4 B.﹣4 C.﹣6 D.6
3.下列实数中,为无理数的是( )
A. B. C.﹣5 D.0.3156
4.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为( )
A.﹣2 B.0 C.1 D.3
5.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,,,,则四人中成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
6.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
A.2 B.3 C.4 D.5
7.点是一次函数图象上一点,若点在第一象限,则的取值范围是( ).
A. B. C. D.
8.下列命题是假命题的是( )
A.有一个外角是120°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
9.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )
A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
10.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )
A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
二、填空题(共7小题,每小题3分,满分21分)
11.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.
12.不等式组的解集为,则的取值范围为_____.
13.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________
14.边长为6的正六边形外接圆半径是_____.
15.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.
16.计算(2a)3的结果等于__.
17.抛物线y=﹣x2+4x﹣1的顶点坐标为 .
三、解答题(共7小题,满分69分)
18.(10分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:
⑴补全条形统计图,“体育”对应扇形的圆心角是 度;
⑵根据以上统计分析,估计该校名学生中喜爱“娱乐”的有 人;
⑶在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率
19.(5分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,,
20.(8分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.
21.(10分)我们知道中,如果,,那么当时,的面积最大为6;
(1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
(2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
22.(10分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.
(2)先化简,再求值:()÷,其中x=﹣1.
23.(12分)已知抛物线过点,,求抛物线的解析式,并求出抛物线的顶点坐标.
24.(14分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).
(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;
(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
【详解】
如图,
∵∠1=40°,
∴∠3=∠1=40°,
∴∠2=90°-40°=50°.
故选A.
【点睛】
此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.
2、C
【解析】
分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.
详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),
∴OA1=5,
∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,
∴A1A2=A2A3=…=OA1=5,
∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),
当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,
即m=﹣1.
故选C.
点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.
3、B
【解析】
根据无理数的定义解答即可.
【详解】
选项A、是分数,是有理数;
选项B、是无理数;
选项C、﹣5为有理数;
选项D、0.3156是有理数;
故选B.
【点睛】
本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.
4、B
【解析】
解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.
【详解】
由关于y的不等式组,可整理得
∵该不等式组解集无解,
∴2a+4≥﹣2
即a≥﹣3
又∵得x=
而关于x的分式方程有负数解
∴a﹣4<1
∴a<4
于是﹣3≤a<4,且a 为整数
∴a=﹣3、﹣2、﹣1、1、1、2、3
则符合条件的所有整数a的和为1.
故选B.
【点睛】
本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
5、D
【解析】
根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【详解】
∵0.45<0.51<0.62,
∴丁成绩最稳定,
故选D.
【点睛】
此题主要考查了方差,关键是掌握方差越小,稳定性越大.
6、D
【解析】
∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
解得a=1.故选D.
7、B
【解析】
试题解析:把点代入一次函数得,
.
∵点在第一象限上,
∴,可得,
因此,即,
故选B.
8、C
【解析】
解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
B. 等边三角形有3条对称轴,故B选项正确;
C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
D.利用SSS.可以判定三角形全等.故D选项正确;
故选C.
9、D
【解析】
解:由对称轴x=2可知:b=﹣4,
∴抛物线y=x2﹣4x+c,
令x=﹣1时,y=c+5,
x=3时,y=c﹣3,
关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
当△=0时,
即c=4,
此时x=2,满足题意.
当△>0时,
(c+5)(c﹣3)≤0,
∴﹣5≤c≤3,
当c=﹣5时,
此时方程为:﹣x2+4x+5=0,
解得:x=﹣1或x=5不满足题意,
当c=3时,
此时方程为:﹣x2+4x﹣3=0,
解得:x=1或x=3此时满足题意,
故﹣5<c≤3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
10、C
【解析】
根据题目数据求出函数解析式,根据二次函数的性质可得.
【详解】
根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
得:
解得:a=−0.2,b=1.5,c=−2,
即p=−0.2t2+1.5t−2,
当t=−=3.75时,p取得最大值,
故选C.
【点睛】
本题考查了二次函数的应用,熟练掌握性质是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
试题解析:如图,连接OM交AB于点C,连接OA、OB,
由题意知,OM⊥AB,且OC=MC=1,
在RT△AOC中,∵OA=2,OC=1,
∴cos∠AOC=,AC=
∴∠AOC=60°,AB=2AC=2,
∴∠AOB=2∠AOC=120°,
则S弓形ABM=S扇形OAB-S△AOB
=
=,
S阴影=S半圆-2S弓形ABM
=π×22-2()
=2.
故答案为2.
12、k≥1
【解析】
解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.
故答案为k≥1.
13、
【解析】
作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
【详解】
作PD⊥BC,则PD∥AC,
∴△PBD~△ABC,
∴ .
∵AC=3,BC=4,
∴AB=,
∵AP=2BP,
∴BP=,
∴,
∴点P运动的路径长=.
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
14、6
【解析】
根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.
【详解】
解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,
∴边长为6的正六边形外接圆半径是6,故答案为:6.
【点睛】
本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键.
15、
【解析】
用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.
【详解】
解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,
画树状图:
共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,
所以抽到卡片上印有图案都是轴对称图形的概率.
故答案为.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.
16、8
【解析】
试题分析:根据幂的乘方与积的乘方运算法则进行计算即可
考点:(1)、幂的乘方;(2)、积的乘方
17、(2,3)
【解析】
试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).
考点:二次函数的性质
三、解答题(共7小题,满分69分)
18、(1)72;(2)700;(3).
【解析】试题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.
试题解析:
(1)调查的学生总数为60÷30%=200(人),
则体育类人数为200﹣(30+60+70)=40,
补全条形图如下:
“体育”对应扇形的圆心角是360°×=72°;
(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),
(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:
所以P(2名学生来自不同班)=.
考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.
19、14.2米;
【解析】
Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.
【详解】
设米
∵∠C=45°
在中,米,
,
又米,
在中
Tan∠ADB= ,
Tan60°=
解得
答,建筑物的高度为米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.
20、 (1)m≥﹣;(2)m的值为2.
【解析】
(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;
(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.
【详解】
(1)由题意知,(2m+2)2﹣4×1×m2≥1,
解得:m≥﹣;
(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,
∵α+β+αβ=1,
∴﹣(2m+2)+m2=1,
解得:m1=﹣1,m1=2,
由(1)知m≥﹣,
所以m1=﹣1应舍去,
m的值为2.
【点睛】
本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.
21、 (1)当,时有最大值1;(2)当时,面积有最大值32.
【解析】
(1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
(2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
【详解】
(1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
最大面积为×6×(16-6)=1.
故当,时有最大值1;
(2)当,时有最大值,
设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
∴抛物线开口向下
∴当 时,面积有最大值32.
【点睛】
本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
22、(1) (2)
【解析】
(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
解:(1)原式=﹣+1+2=﹣+1+=﹣;
(2)原式=
=
=
=,
当x=﹣1时,原式==.
【点睛】
本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.
23、y=+2x;(-1,-1).
【解析】
试题分析:首先将两点代入解析式列出关于b和c的二元一次方程组,然后求出b和c的值,然后将抛物线配方成顶点式,求出顶点坐标.
试题解析:将点(0,0)和(1,3)代入解析式得:解得:
∴抛物线的解析式为y=+2x ∴y=+2x=-1 ∴顶点坐标为(-1,-1).
考点:待定系数法求函数解析式.
24、(1)P(两个小孩都是女孩)=;(2)P(三个小孩中恰好是2女1男)=.
【解析】
(1)画出树状图即可解题,(2)画出树状图即可解题.
【详解】
(1)画树状图如下:
由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,
∴P(两个小孩都是女孩)=.
(2)画树状图如下:
由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,
∴P(三个小孩中恰好是2女1男)=.
【点睛】
本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.
山东省枣庄市峄城区底阁镇重点达标名校2022年十校联考最后数学试题含解析: 这是一份山东省枣庄市峄城区底阁镇重点达标名校2022年十校联考最后数学试题含解析,共21页。试卷主要包含了在平面直角坐标系中,点,﹣3的相反数是,若分式的值为0,则x的值为等内容,欢迎下载使用。
山东省莒南县重点名校2022年十校联考最后数学试题含解析: 这是一份山东省莒南县重点名校2022年十校联考最后数学试题含解析,共18页。
2022年福州第一中学重点名校十校联考最后数学试题含解析: 这是一份2022年福州第一中学重点名校十校联考最后数学试题含解析,共18页。