|试卷下载
搜索
    上传资料 赚现金
    扬州市江都区实验重点名校2021-2022学年中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    扬州市江都区实验重点名校2021-2022学年中考冲刺卷数学试题含解析01
    扬州市江都区实验重点名校2021-2022学年中考冲刺卷数学试题含解析02
    扬州市江都区实验重点名校2021-2022学年中考冲刺卷数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    扬州市江都区实验重点名校2021-2022学年中考冲刺卷数学试题含解析

    展开
    这是一份扬州市江都区实验重点名校2021-2022学年中考冲刺卷数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,如图,能判定EB∥AC的条件是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,若AB∥CD,CD∥EF,那么∠BCE=( )

    A.∠1+∠2 B.∠2-∠1
    C.180°-∠1+∠2 D.180°-∠2+∠1
    2.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )
    A.= B.=
    C.= D.=
    3.若代数式有意义,则实数x的取值范围是( )
    A.x=0 B.x=2 C.x≠0 D.x≠2
    4.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是( )
    A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1
    5.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )

    A.②③④ B.①②③ C.①④ D.①②④
    6.如图,能判定EB∥AC的条件是( )

    A.∠C=∠ABE B.∠A=∠EBD
    C.∠A=∠ABE D.∠C=∠ABC
    7.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ).

    A. B. C. D.
    8.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )

    A. B. C. D.
    9.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=(  )

    A.30° B.40° C.50° D.60°
    10.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )

    A. B.
    C. D.
    11.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是(  )

    A.3 B.3.5 C.4 D.5
    12.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:
    最高气温(℃)

    25

    26

    27

    28

    天 数

    1

    1

    2

    3

    则这组数据的中位数与众数分别是( )
    A.27,28 B.27.5,28 C.28,27 D.26.5,27
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若式子有意义,则实数x的取值范围是_______.
    14.方程=1的解是___.
    15.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________

    16.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.

    17.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.

    18.若x,y为实数,y=,则4y﹣3x的平方根是____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=  ,c=  ,点C的坐标为  .如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.

    20.(6分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
    ①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):

    ②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
    A班:80 80 82 83 85 85 86 87 87 87 88 89 89
    B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
    ③A、B两班学生测试成绩的平均数、中位数、方差如下:

    平均数
    中位数
    方差
    A班
    80.6
    m
    96.9
    B班
    80.8
    n
    153.3
    根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).
    21.(6分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
    22.(8分)阅读下面材料,并解答问题.
    材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
    解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
    ∵对应任意x,上述等式均成立,∴,∴a=2,b=1
    ∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.
    解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.
    23.(8分)列方程或方程组解应用题:
    为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?
    24.(10分)发现
    如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
    验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
    延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣  )×180°.

    25.(10分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
    (1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
    (2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
    26.(12分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (1)该校有_____个班级,补全条形统计图;
    (2)求该校各班留守儿童人数数据的平均数,众数与中位数;
    (3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
    27.(12分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.
    【详解】
    解:∵AB∥CD,
    ∴∠BCD=∠1,
    ∵CD∥EF,
    ∴∠DCE=180°-∠2,
    ∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.
    故选:D.
    【点睛】
    本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.
    2、A
    【解析】
    设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.
    【详解】
    设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.
    故选A.
    【点睛】
    本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.
    3、D
    【解析】
    根据分式的分母不等于0即可解题.
    【详解】
    解:∵代数式有意义,
    ∴x-2≠0,即x≠2,
    故选D.
    【点睛】
    本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.
    4、A
    【解析】
    根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.
    【详解】
    ∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,
    ∴a=﹣2,b=1是假命题的反例.
    故选A.
    【点睛】
    本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.
    5、D
    【解析】
    根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y1),(,y2)到对称轴的距离即可判断④.
    【详解】
    ∵二次函数的图象的开口向下,
    ∴a<0,
    ∵二次函数的图象y轴的交点在y轴的正半轴上,
    ∴c>0,
    ∵二次函数图象的对称轴是直线x=,
    ∴a=-b,
    ∴b>0,
    ∴abc<0,故①正确;
    ∵a=-b, ∴a+b=0,故②正确;
    把x=2代入抛物线的解析式得,
    4a+2b+c=0,故③错误;
    ∵ ,

    故④正确;
    故选D..
    【点睛】
    本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.
    6、C
    【解析】
    在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
    【详解】
    A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;
    B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;
    C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;
    D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.
    故选C.
    【点睛】
    本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
    7、B
    【解析】
    试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
    考点:3.线段垂直平分线性质;3.轴对称作图.
    8、C
    【解析】
    根据A点坐标即可建立平面直角坐标.
    【详解】
    解:由A(0,2),B(1,1)可知原点的位置,

    建立平面直角坐标系,如图,
    ∴C(2,-1)
    故选:C.
    【点睛】
    本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
    9、D
    【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.
    点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.
    10、D
    【解析】
    找到从左面看到的图形即可.
    【详解】
    从左面上看是D项的图形.故选D.
    【点睛】
    本题考查三视图的知识,左视图是从物体左面看到的视图.
    11、A
    【解析】
    根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
    【详解】
    解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
    AP≥AB,
    AP≥3.5,
    故选:A.
    【点睛】
    本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
    12、A
    【解析】
    根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,
    ∴众数是28,
    这组数据从小到大排列为:25,26,27,27,28,28,28
    ∴中位数是27
    ∴这周最高气温的中位数与众数分别是27,28
    故选A.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x≤2且x≠1
    【解析】
    根据被开方数大于等于1,分母不等于1列式计算即可得解.
    【详解】
    解:由题意得,且x≠1,
    解得且x≠1.
    故答案为且x≠1.
    【点睛】
    本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.
    14、x=﹣4
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    去分母得:3+2x=x﹣1,
    解得:x=﹣4,
    经检验x=﹣4是分式方程的解.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    15、
    【解析】
    作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
    【详解】
    作PD⊥BC,则PD∥AC,
    ∴△PBD~△ABC,
    ∴ .
    ∵AC=3,BC=4,
    ∴AB=,
    ∵AP=2BP,
    ∴BP=,
    ∴,
    ∴点P运动的路径长=.
    故答案为:.

    【点睛】
    本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
    16、1
    【解析】
    ∵AM=AC,BN=BC,∴AB是△ABC的中位线,
    ∴AB=MN=1m,
    故答案为1.
    17、1.
    【解析】
    由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.
    【详解】
    ∵BD⊥CD,BD=2,
    ∴S△BCD=BD•CD=2,
    即CD=2.
    ∵C(2,0),
    即OC=2,
    ∴OD=OC+CD=2+2=1,
    ∴B(1,2),代入反比例解析式得:k=10,
    即y=,
    则S△AOC=1.
    故答案为1.
    【点睛】
    本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.
    18、±
    【解析】
    ∵与同时成立,
    ∴ 故只有x2﹣4=0,即x=±2,
    又∵x﹣2≠0,
    ∴x=﹣2,y==﹣,
    4y﹣3x=﹣1﹣(﹣6)=5,
    ∴4y﹣3x的平方根是±.
    故答案:±.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(3)3, 2,C(﹣2,4);(2)y=﹣m2+m ,PQ与OQ的比值的最大值为;(3)S△PBA=3.
    【解析】
    (3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
    (2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
    (3)求得P点坐标,利用图形割补法求解即可.
    【详解】
    (3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.
    ∴A(2,4),B(4,2).
    又∵抛物线过B(4,2)
    ∴c=2.
    把A(2,4)代入y=﹣x2+bx+2得,
    4=﹣×22+2b+2,解得,b=3.
    ∴抛物线解析式为,y=﹣x2+x+2.
    令﹣x2+x+2=4,
    解得,x=﹣2或x=2.
    ∴C(﹣2,4).
    (2)如图3,

    分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.
    设P(m,﹣m2+m+2),Q(n,﹣n+2),
    则PE=﹣m2+m+2,QD=﹣n+2.
    又∵=y.
    ∴n=.
    又∵,即
    把n=代入上式得,

    整理得,2y=﹣m2+2m.
    ∴y=﹣m2+m.
    ymax=.
    即PQ与OQ的比值的最大值为.
    (3)如图2,

    ∵∠OBA=∠OBP+∠PBA=25°
    ∠PBA+∠CBO=25°
    ∴∠OBP=∠CBO
    此时PB过点(2,4).
    设直线PB解析式为,y=kx+2.
    把点(2,4)代入上式得,4=2k+2.
    解得,k=﹣2
    ∴直线PB解析式为,y=﹣2x+2.
    令﹣2x+2=﹣x2+x+2
    整理得, x2﹣3x=4.
    解得,x=4(舍去)或x=5.
    当x=5时,﹣2x+2=﹣2×5+2=﹣7
    ∴P(5,﹣7).
    过P作PH⊥cy轴于点H.
    则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.
    S△OAB=OA•OB=×2×2=7.
    S△BHP=PH•BH=×5×3=35.
    ∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.
    【点睛】
    本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.
    20、(1)见解析;(2)m=81,n=85;(3)略.
    【解析】
    (1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;
    (2)根据中位数的定义求解即可;
    (3)可以从中位数和方差的角度分析,合理即可.
    【详解】
    解:(1)A、B两班学生人数=5+2+3+22+8=40人,
    A班70≤x<80组的人数=40-1-7-13-9=10人,
    A、B两班学生数学成绩频数分布直方图如下:

    (2)根据中位数的定义可得:m==81,n==85;
    (3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;
    从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.
    【点睛】
    本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.
    21、(1)100+200x;(2)1.
    【解析】
    试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;
    (2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.
    试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;
    (2)根据题意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.
    答:张阿姨需将每斤的售价降低1元.
    考点:1.一元二次方程的应用;2.销售问题;3.综合题.
    22、 (1) =x2+7+ (2) 见解析
    【解析】
    (1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;
    (2)原式分子变形后,利用不等式的性质求出最小值即可.
    【详解】
    (1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,
    可得 ,
    解得:a=7,b=1,
    则原式=x2+7+;
    (2)由(1)可知,=x2+7+ .
    ∵x2≥0,∴x2+7≥7;
    当x=0时,取得最小值0,
    ∴当x=0时,x2+7+最小值为1,
    即原式的最小值为1.
    23、15千米.
    【解析】
    首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.
    【详解】
    :解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:
    =4×
    解得:x=15,经检验x=15是原方程的解且符合实际意义.
    答:小张用骑公共自行车方式上班平均每小时行驶15千米.
    24、(1)见解析;(2)见解析;(3)1.
    【解析】
    (1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
    (2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
    【详解】
    (1)如图2,延长AB交CD于E,
    则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
    ∴∠ABC=∠A+∠C+∠D;
    (2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
    ∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
    ∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
    则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
    ∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
    而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
    ∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
    故答案为1.



    【点睛】
    此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型
    25、(1);(2)
    【解析】
    【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
    【详解】解:(1)因为1、-1、2三个数中由两个正数,
    所以从中任意取一个球,标号为正数的概率是.
    (2)因为直线y=kx+b经过一、二、三象限,
    所以k>0,b>0,
    又因为取情况:
    k b
    1
    -1
    2
    1
    1,1
    1,-1
    1,2
    -1
    -1,1
    -1,-1
    -1.2
    2
    2,1
    2,-1
    2,2
    共9种情况,符合条件的有4种,
    所以直线y=kx+b经过一、二、三象限的概率是.
    【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
    26、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.
    【解析】
    (1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;
    (2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;
    (3)利用班级数60乘以(2)中求得的平均数即可.
    【详解】
    解:(1)该校的班级数是:2÷2.5%=16(个).
    则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
    条形统计图补充如下图所示:

    故答案为16;
    (2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3
    将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.
    故这组数据的众数是10,中位数是(8+10)÷2=3.
    即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;
    (3)该镇小学生中,共有留守儿童60×3=1(名).
    答:该镇小学生中共有留守儿童1名.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.
    27、25°
    【解析】
    先利用正方形的性质得OA=OC,∠AOC=90°,再根据旋转的性质得OC=OF,∠COF=40°,则OA=OF,根据等腰三角形的性质得∠OAF=∠OFA,然后根据三角形的内角和定理计算∠OFA的度数.
    【详解】
    解:∵四边形OABC为正方形,
    ∴OA=OC,∠AOC=90°,
    ∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
    ∴OC=OF,∠COF=40°,
    ∴OA=OF,
    ∴∠OAF=∠OFA,
    ∵∠AOF=∠AOC+∠COF=90°+40°=130°,
    ∴∠OFA=(180°-130°)=25°.
    故答案为25°.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.

    相关试卷

    扬州市邗江区重点名校2022年中考冲刺卷数学试题含解析: 这是一份扬州市邗江区重点名校2022年中考冲刺卷数学试题含解析,共15页。试卷主要包含了的相反数是等内容,欢迎下载使用。

    2022届扬州市江都区实验重点名校中考数学五模试卷含解析: 这是一份2022届扬州市江都区实验重点名校中考数学五模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,点A,下列说法不正确的是,﹣18的倒数是等内容,欢迎下载使用。

    2021-2022学年江苏省扬州市江都区实验中学中考二模数学试题含解析: 这是一份2021-2022学年江苏省扬州市江都区实验中学中考二模数学试题含解析,共25页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map