搜索
    上传资料 赚现金
    英语朗读宝

    天津市河北区扶轮中学2022年中考五模数学试题含解析

    天津市河北区扶轮中学2022年中考五模数学试题含解析第1页
    天津市河北区扶轮中学2022年中考五模数学试题含解析第2页
    天津市河北区扶轮中学2022年中考五模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市河北区扶轮中学2022年中考五模数学试题含解析

    展开

    这是一份天津市河北区扶轮中学2022年中考五模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()

    A.30° B.40°
    C.60° D.70°
    2.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为(  )

    A.2 B.4 C.4 D.8
    3.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是(  )

    A.20,20 B.30,20 C.30,30 D.20,30
    4.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为(  )

    A.56×108 B.5.6×108 C.5.6×109 D.0.56×1010
    5.估计的值在 ( )
    A.4和5之间 B.5和6之间
    C.6和7之间 D.7和8之间
    6.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
    A. B.x(x+1)=1980
    C.2x(x+1)=1980 D.x(x-1)=1980
    7.一元二次方程x2﹣2x=0的根是(  )
    A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2
    8.如图是由5个相同的正方体搭成的几何体,其左视图是( )

    A. B.
    C. D.
    9.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是  

    A. B. C. D.
    10.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是(  )

    A.12 B.14 C.16 D.18
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=﹣1,则m的值是____.
    12.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.

    13.不等式组的解是____.
    14.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.
    15.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
    16.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.
    三、解答题(共8题,共72分)
    17.(8分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
    (1)求证:BC是⊙O的切线;
    (2)若⊙O的半径为6,BC=8,求弦BD的长.

    18.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)

    19.(8分) (1)解方程组
    (2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
    20.(8分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
    (1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
    (2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.

    21.(8分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

    (Ⅰ)如图①,当∠BOP=300时,求点P的坐标;
    (Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
    (Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
    22.(10分)试探究:
    小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE=   ;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.
    拓展延伸:
    小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:
    (1)求证:△ACF∽△FCE;
    (2)求∠A的度数;
    (3)求cos∠A的值;
    应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.

    23.(12分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
    (1)求购进A、B两种纪念品每件各需多少元?
    (2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
    (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
    24.如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    ∵AB∥CD,∠A=70°,
    ∴∠1=∠A=70°,
    ∵∠1=∠C+∠E,∠C=40°,
    ∴∠E=∠1﹣∠C=70°﹣40°=30°.
    故选A.
    2、C
    【解析】
    根据题意可以求得点O'的坐标,从而可以求得k的值.
    【详解】
    ∵点B的坐标为(0,4),
    ∴OB=4,
    作O′C⊥OB于点C,
    ∵△ABO绕点B逆时针旋转60°后得到△A'BO',
    ∴O′B=OB=4,
    ∴O′C=4×sin60°=2,BC=4×cos60°=2,
    ∴OC=2,
    ∴点O′的坐标为:(2,2),
    ∵函数y=(x>0)的图象经过点O',
    ∴2=,得k=4,
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.
    3、C
    【解析】
    根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.
    【详解】
    捐款30元的人数为20人,最多,则众数为30,
    中间两个数分别为30和30,则中位数是30,
    故选C.
    【点睛】
    本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.
    4、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.
    【详解】
    56亿=56×108=5.6×101,
    故选C.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    5、C
    【解析】
    根据 ,可以估算出位于哪两个整数之间,从而可以解答本题.
    【详解】
    解:∵

    故选:C.
    【点睛】
    本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.
    6、D
    【解析】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.
    【详解】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,
    ∴全班共送:(x﹣1)x=1980,
    故选D.
    【点睛】
    此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
    7、C
    【解析】
    方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
    【详解】
    方程变形得:x(x﹣1)=0,
    可得x=0或x﹣1=0,
    解得:x1=0,x1=1.
    故选C.
    【点睛】
    考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.
    8、A
    【解析】
    根据三视图的定义即可判断.
    【详解】
    根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.
    【点睛】
    本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.
    9、B
    【解析】
    由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
    【详解】
    添加,根据AAS能证明≌,故A选项不符合题意.
    B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;
    C.添加,可得,根据AAS能证明≌,故C选项不符合题意;
    D.添加,可得,根据AAS能证明≌,故D选项不符合题意,
    故选B.
    【点睛】
    本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    10、C
    【解析】

    延长线段BN交AC于E.
    ∵AN平分∠BAC,∴∠BAN=∠EAN.
    在△ABN与△AEN中,
    ∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
    ∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
    又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,
    ∴AC=AE+CE=10+6=16.故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、3.
    【解析】
    可以先由韦达定理得出两个关于、的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.
    【详解】
    得+=-2m-3,=m2,又因为,所以m2-2m-3=0,得m=3或m=-1,因为一元二次方程的两个不相等的实数根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,综上m=3.
    【点睛】
    本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.
    12、1 1
    【解析】
    根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“边角边”证明Rt△ABD和Rt△CDB全等;根据等底等高的三角形面积相等解答.
    【详解】
    有,Rt△ABD≌Rt△CDB,
    理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,
    在Rt△ABD和Rt△CDB中,

    ∴Rt△ABD≌Rt△CDB(SAS);
    有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.
    故答案为:1;1.
    【点睛】
    本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.
    13、
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】

    解不等式①,得x>1,
    解不等式②,得x≤1,
    所以不等式组的解集是1<x≤1,
    故答案是:1<x≤1.
    【点睛】
    考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    14、k≥-1
    【解析】
    首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
    【详解】
    当时,方程是一元一次方程:,方程有实数根;
    当时,方程是一元二次方程,
    解得:且.
    综上所述,关于的方程有实数根,则的取值范围是.
    故答案为
    【点睛】
    考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
    这种情况.
    15、
    【解析】
    根据随机事件概率大小的求法,找准两点:
    ①符合条件的情况数目;
    ②全部情况的总数.
    二者的比值就是其发生的概率的大小.
    【详解】
    解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
    ∴从中任意摸出一个球,则摸出白球的概率是.
    故答案为:.
    【点睛】
    本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
    16、
    【解析】
    分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.
    详解:∵关于x、y的二元一次方程组的解是,
    ∴将解代入方程组
    可得m=﹣1,n=2
    ∴关于a、b的二元一次方程组整理为:
    解得:
    点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.

    三、解答题(共8题,共72分)
    17、(1)详见解析;(2)BD=9.6.
    【解析】
    试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
    (2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
    试题解析:(1)证明:如下图所示,连接OB.
    ∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
    ∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
    ∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
    ∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.

    (2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
    ∵ ,∴ ,
    ∴.
    点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
    18、客车不能通过限高杆,理由见解析
    【解析】
    根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=,求出DF的值,即可判断.
    【详解】
    ∵DE⊥BC,DF⊥AB,
    ∴∠EDF=∠ABC=14°.
    在Rt△EDF中,∠DFE=90°,
    ∵cos∠EDF=,
    ∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.
    ∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,
    ∴客车不能通过限高杆.

    【点睛】
    考查解直角三角形,选择合适的锐角三角函数是解题的关键.
    19、(1);(2)当坐标为时,取得最小值为.
    【解析】
    (1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值.
    【详解】
    解:(1)
    ①②得:
    解得:
    把代入②得,
    则方程组的解为
    (2 )由题意得:,
    当坐标为时,取得最小值为.
    【点睛】
    此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.
    20、(1)45°;(2)26°.
    【解析】
    (1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
    (2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
    【详解】
    (1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
    ∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
    ∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
    ∴∠ABD=45°;

    (2)连接OD,
    ∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
    ∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
    ∵∠AOD是△ODP的一个外角,
    ∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
    ∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
    ∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
    【点睛】
    本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    21、(Ⅰ)点P的坐标为(,1).
    (Ⅱ)(0<t<11).
    (Ⅲ)点P的坐标为(,1)或(,1).
    【解析】
    (Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.
    (Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,
    △QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案.
    (Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与,即可求得t的值:
    【详解】
    (Ⅰ)根据题意,∠OBP=90°,OB=1.
    在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
    ∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).
    ∴点P的坐标为(,1).
    (Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,
    ∴△OB′P≌△OBP,△QC′P≌△QCP.
    ∴∠OPB′=∠OPB,∠QPC′=∠QPC.
    ∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.
    ∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.
    又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.
    由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11-t,CQ=1-m.
    ∴.∴(0<t<11).
    (Ⅲ)点P的坐标为(,1)或(,1).
    过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.

    ∴∠PC′E+∠EPC′=90°.
    ∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.
    ∴△PC′E∽△C′QA.∴.
    ∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,
    ∴.
    ∴.
    ∵,即,∴,即.
    将代入,并化简,得.解得:.
    ∴点P的坐标为(,1)或(,1).
    22、(1)小张的发现正确;(2)详见解析;(3)∠A=36°;(4)
    【解析】
    尝试探究:根据勾股定理计算即可;
    拓展延伸:(1)由AE2=AC•EC,推出 ,又AE=FC,推出 ,即可解问题;
    (2)利用相似三角形的性质即可解决问题;
    (3)如图,过点F作FM⊥AC交AC于点M,根据cos∠A= ,求出AM、AF即可;
    应用迁移:利用(3)中结论即可解决问题;
    【详解】
    解:尝试探究:﹣1;
    ∵∠ACB=90°,BC=1,AC=2,
    ∴AB=,
    ∴AD=AE=,
    ∵AE2=()2=6﹣2,
    AC•EC=2×[2﹣()]=6﹣ ,
    ∴AE2=AC•EC,
    ∴小张的发现正确;
    拓展延伸:
    (1)∵AE2=AC•EC,

    ∵AE=FC,
    ∴,
    又∵∠C=∠C,
    ∴△ACF∽△FCE;
    (2)∵△ACF∽△FCE,∴∠AFC=∠CEF,
    又∵EF=FC,
    ∴∠C=∠CEF,
    ∴∠AFC=∠C,
    ∴AC=AF,
    ∵AE=EF,
    ∴∠A=∠AFE,
    ∴∠FEC=2∠A,
    ∵EF=FC,
    ∴∠C=2∠A,
    ∵∠AFC=∠C=2∠A,
    ∵∠AFC+∠C+∠A=180°,
    ∴∠A=36°;
    (3)如图,过点F作FM⊥AC交AC于点M,

    由尝试探究可知AE= ,
    EC=,
    ∵EF=FC,由(2)得:AC=AF=2,
    ∴ME= ,
    ∴AM= ,
    ∴cos∠A= ;
    应用迁移:
    ∵正十边形的中心角等于 =36°,且是半径为2的圆内接正十边形,
    ∴如图,当点A是圆内接正十边形的圆心,AC和AF都是圆的半径,FC是正十边形的边长时,
    设AF=AC=2,FC=EF=AE=x,
    ∵△ACF∽△FCE,
    ∴ ,
    ∴ ,
    ∴ ,
    ∴半径为2的圆内接正十边形的边长为.
    【点睛】
    本题考查相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.
    23、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元
    【解析】
    解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,
    根据题意得方程组得:,…2分
    解方程组得:,
    ∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;
    (2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,
    ∴,…6分
    解得:50≤x≤53,…7分
    ∵x 为正整数,
    ∴共有4种进货方案…8分;
    (3)因为B种纪念品利润较高,故B种数量越多总利润越高,
    因此选择购A种50件,B种50件.…10分
    总利润=50×20+50×30=2500(元)
    ∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分
    24、(1),N(3,6);(2)y=-x+2,S△OMN=3.
    【解析】
    (1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
    (2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
    【详解】
    解:(1)∵点M是AB边的中点,∴M(6,3).
    ∵反比例函数y=经过点M,∴3=.∴k=1.
    ∴反比例函数的解析式为y=.
    当y=6时,x=3,∴N(3,6).
    (2)由题意,知M(6,2),N(2,6).
    设直线MN的解析式为y=ax+b,则

    解得,
    ∴直线MN的解析式为y=-x+2.
    ∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
    【点睛】
    本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.

    相关试卷

    天津市河北区扶轮中学2023-2024学年九上数学期末质量跟踪监视试题含答案:

    这是一份天津市河北区扶轮中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了按下面的程序计算,下列四种说法,一个物体如图所示,它的俯视图是等内容,欢迎下载使用。

    2023年天津市河北区中考数学三模试卷(含解析):

    这是一份2023年天津市河北区中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年天津市河北区中考数学二模试卷(含解析):

    这是一份2023年天津市河北区中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map