内蒙古巴彦淖尔市乌拉特前旗重点中学2021-2022学年中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
A. B. C. D.
2.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是( )
A.70° B.80° C.110° D.140°
3.下列计算正确的是( )
A.x2x3=x6 B.(m+3)2=m2+9
C.a10÷a5=a5 D.(xy2)3=xy6
4.如图,等边△ABC内接于⊙O,已知⊙O的半径为2,则图中的阴影部分面积为( )
A. B. C. D.
5.一元二次方程x2﹣2x=0的根是( )
A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2
6.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )
A. B.2 C. D.
7.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )
A.40° B.45° C.50° D.55°
8.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A. B. C. D.
9.计算 的结果是( )
A.a2 B.-a2 C.a4 D.-a4
10.一组数据3、2、1、2、2的众数,中位数,方差分别是( )
A.2,1,0.4 B.2,2,0.4
C.3,1,2 D.2,1,0.2
11.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为( )
A. cm B.cm C.cm D. cm
12.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有_____个.
14.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1= ▲ .
15.用换元法解方程时,如果设,那么原方程化成以为“元”的方程是________.
16.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___.
17.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.
18.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)问题提出
(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB ∠ACB(填“>”“<”“=”);
问题探究
(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;
问题解决
(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.
20.(6分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.
(1)求证:∠F=∠B;
(2)若AB=12,BG=10,求AF的长.
21.(6分) 如图,在平面直角坐标系中,直线y1=2x+b与坐标轴交于A、B两点,与双曲线 (x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,点B的坐标为(0,﹣2).
(1)求直线y1=2x+b及双曲线(x>0)的表达式;
(2)当x>0时,直接写出不等式的解集;
(3)直线x=3交直线y1=2x+b于点E,交双曲线(x>0)于点F,求△CEF的面积.
22.(8分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点.
点B,C的坐标分别为______,______;
是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
连接PB,若E为PB的中点,连接OE,则OE的最大值______.
23.(8分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
24.(10分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式.
25.(10分)解方程:=1.
26.(12分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
27.(12分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B.
【解析】
试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
考点:由实际问题抽象出一元二次方程.
2、C
【解析】
分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.
详解:作对的圆周角∠APC,如图,
∵∠P=∠AOC=×140°=70°
∵∠P+∠B=180°,
∴∠B=180°﹣70°=110°,
故选:C.
点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3、C
【解析】
根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.
【详解】
x2•x3=x5,故选项A不合题意;
(m+3)2=m2+6m+9,故选项B不合题意;
a10÷a5=a5,故选项C符合题意;
(xy2)3=x3y6,故选项D不合题意.
故选:C.
【点睛】
本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.
4、A
【解析】解:连接OB、OC,连接AO并延长交BC于H,则AH⊥BC.
∵△ABC是等边三角形,∴BH=AB=,OH=1,∴△OBC的面积= ×BC×OH=,则△OBA的面积=△OAC的面积=△OBC的面积=,由圆周角定理得,∠BOC=120°,∴图中的阴影部分面积==.故选A.
点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.
5、C
【解析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
【详解】
方程变形得:x(x﹣1)=0,
可得x=0或x﹣1=0,
解得:x1=0,x1=1.
故选C.
【点睛】
考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.
6、C
【解析】
过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.
【详解】
过O作OC⊥AB,交圆O于点D,连接OA,
由折叠得到CD=OC=OD=1cm,
在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,
即AC2+1=4,
解得:AC=cm,
则AB=2AC=2cm.
故选C.
【点睛】
此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.
7、D
【解析】
试题分析:如图,
连接OC,
∵AO∥DC,
∴∠ODC=∠AOD=70°,
∵OD=OC,
∴∠ODC=∠OCD=70°,
∴∠COD=40°,
∴∠AOC=110°,
∴∠B=∠AOC=55°.
故选D.
考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
8、A
【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.
9、D
【解析】
直接利用同底数幂的乘法运算法则计算得出答案.
【详解】
解:,
故选D.
【点睛】
此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
10、B
【解析】
试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
故选B.
11、B
【解析】
试题解析:∵菱形ABCD的对角线
根据勾股定理,
设菱形的高为h,
则菱形的面积
即
解得
即菱形的高为cm.
故选B.
12、D
【解析】
先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.
【详解】
解:∵∠ACB=90°,AB=5,AC=4,
∴BC=3,
在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.
∴∠A=∠BCD.
∴tan∠BCD=tanA==,
故选D.
【点睛】
本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
试题解析:∵袋中装有6个黑球和n个白球,
∴袋中一共有球(6+n)个,
∵从中任摸一个球,恰好是黑球的概率为,
∴,
解得:n=1.
故答案为1.
14、
【解析】
连接BE,
∵在线段AC同侧作正方形ABMN及正方形BCEF,
∴BE∥AM.∴△AME与△AMB同底等高.
∴△AME的面积=△AMB的面积.
∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
∴当n≥2时,
15、y-
【解析】
分析:根据换元法,可得答案.
详解:﹣=1时,如果设=y,那么原方程化成以y为“元”的方程是y﹣=1.
故答案为y﹣=1.
点睛:本题考查了换元法解分式方程,把换元为y是解题的关键.
16、
【解析】
设每只雀、燕的重量各为x两,y两,由题意得:
故答案是:或 .
17、(2,0)
【解析】
【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
∵A(m,﹣3)和点B(﹣1,n),
∴OE=1,AF=3,
∵∠ACB=45°,
∴∠APB=90°,
∴∠BPE+∠APF=90°,
∵∠BPE+∠EBP=90°,
∴∠APF=∠EBP,
∵∠BEP=∠AFP=90°,PA=PB,
∴△BPE≌△PAF,
∴PE=AF=3,
设P(a,0),
∴a+1=3,
a=2,
∴P(2,0),
故答案为(2,0).
【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
18、1.
【解析】
如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.
【详解】
如图,作BH⊥AC于H.
∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.
∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.
故答案为:1.
【点睛】
本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.
【解析】
(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小
(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;
(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.
【详解】
解:(1)∠AEB>∠ACB,理由如下:
如图1,过点E作EF⊥AB于点F,
∵在矩形ABCD中,AB=2AD,E为CD中点,
∴四边形ADEF是正方形,
∴∠AEF=45°,
同理,∠BEF=45°,
∴∠AEB=90°.
而在直角△ABC中,∠ABC=90°,
∴∠ACB<90°,
∴∠AEB>∠ACB.
故答案为:>;
(2)当点P位于CD的中点时,∠APB最大,理由如下:
假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,
在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,
∵∠AFB是△EFB的外角,
∴∠AFB>∠AEB,
∵∠AFB=∠APB,
∴∠APB>∠AEB,
故点P位于CD的中点时,∠APB最大:
(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,
以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,
由题意知DP=OQ=,
∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,
BD=11.6米, AB=3米,CD=EF=1.6米,
∴OA=11.6+3﹣1.6=13米,
∴DP=米,
即小刚与大楼AD之间的距离为4米时看广告牌效果最好.
【点睛】
本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.
20、(1)见解析;(2).
【解析】
(1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
(2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
【详解】
(1)证明:∵,
∴.
∴∠GAB=∠B,
∵AF是⊙O的切线,
∴AF⊥AO.
∴∠GAB+∠GAF=90°.
∵OE⊥AC,
∴∠F+∠GAF=90°.
∴∠F=∠GAB,
∴∠F=∠B;
(2)解:连接OG.
∵∠GAB=∠B,
∴AG=BG.
∵OA=OB=6,
∴OG⊥AB.
∴,
∵∠FAO=∠BOG=90°,∠F=∠B,
∴△FAO∽△BOG,
∴.
∴.
【点睛】
本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
21、(1)直线解析式为y1=2x﹣2,双曲线的表达式为y2= (x>0);(2)0<x<2;
(3)
【解析】
(1)将点B的代入直线y1=2x+b,可得b,则可以求得直线解析式;令y=0可得A点坐标为(1,0),又因为OA=AD,则D点坐标为(2,0),把x=2代入直线解析式,可得y=2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2= ,可得k=4,则双曲线的表达式为y2= (x>0).
(2)由x的取值范围,结合图像可求得答案.
(3)把x=3代入y2函数,可得y= ;把x=3代入y1函数,可得y=4,从而得到EF,由三角形的面积公式可得S△CEF=.
【详解】
解:(1)将点B的坐标(0,﹣2)代入直线y1=2x+b,可得
﹣2=b,
∴直线解析式为y1=2x﹣2,
令y=0,则x=1,
∴A(1,0),
∵OA=AD,
∴D(2,0),
把x=2代入y1=2x﹣2,可得
y=2,
∴点C的坐标为(2,2),
把(2,2)代入双曲线y2= ,可得k=2×2=4,
∴双曲线的表达式为y2= (x>0);
(2)当x>0时,不等式>2x+b的解集为0<x<2;
(3)把x=3代入y2=,可得y= ;把x=3代入y1=2x﹣2,可得y=4,
∴EF=4﹣=,
∴S△CEF=××(3﹣2)=,
∴△CEF的面积为.
【点睛】
本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.
22、(1)B(1,0),C(0,﹣4);(2)点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).
【解析】
试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;
(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到 =2,设OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;
(1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大.
试题解析:(1)在中,令y=0,则x=±1,令x=0,则y=﹣4,∴B(1,0),C(0,﹣4);
故答案为1,0;0,﹣4;
(2)存在点P,使得△PBC为直角三角形,分两种情况:
①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴=2,设OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴ =2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2);
②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴ =,∴CH=,P4H=,∴P4(,﹣﹣4);
同理P1(﹣,﹣4);
综上所述:点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);
(1)如图(1),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=,∴OE的最大值为.故答案为.
23、(1)A(,0)、B(3,0).
(2)存在.S△PBC最大值为
(3)或时,△BDM为直角三角形.
【解析】
(1)在中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】
解:(1)令y=0,则,
∵m<0,∴,解得:,.
∴A(,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为(),
把C(0,)代入可得,.
∴C1的表达式为:,即.
设P(p,),
∴ S△PBC = S△POC+ S△BOP–S△BOC=.
∵<0,∴当时,S△PBC最大值为.
(3)由C2可知: B(3,0),D(0,),M(1,),
∴BD2=,BM2=,DM2=.
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即+=,
解得:,(舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即+=,
解得:,(舍去) .
综上所述,或时,△BDM为直角三角形.
24、答案见解析
【解析】
试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.
试题解析:连接BD,
∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,
∴MN∥BD,MN= BD,
∵ ,
∴ .
25、
【解析】
先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.
【详解】
原方程变形为,
方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),
解得 .
检验:把代入(2x﹣1),(2x﹣1)≠0,
∴是原方程的解,
∴原方程的.
【点睛】
本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.
26、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
27、25°
【解析】
先利用正方形的性质得OA=OC,∠AOC=90°,再根据旋转的性质得OC=OF,∠COF=40°,则OA=OF,根据等腰三角形的性质得∠OAF=∠OFA,然后根据三角形的内角和定理计算∠OFA的度数.
【详解】
解:∵四边形OABC为正方形,
∴OA=OC,∠AOC=90°,
∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
∴OC=OF,∠COF=40°,
∴OA=OF,
∴∠OAF=∠OFA,
∵∠AOF=∠AOC+∠COF=90°+40°=130°,
∴∠OFA=(180°-130°)=25°.
故答案为25°.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.
内蒙古巴彦淖尔市乌拉特前旗2022年中考数学模拟预测题含解析: 这是一份内蒙古巴彦淖尔市乌拉特前旗2022年中考数学模拟预测题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
内蒙古巴彦淖尔市临河区2021-2022学年中考押题数学预测卷含解析: 这是一份内蒙古巴彦淖尔市临河区2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔,计算 的结果为,计算等内容,欢迎下载使用。
2022年内蒙古巴彦淖尔市乌拉特前旗中考押题数学预测卷含解析: 这是一份2022年内蒙古巴彦淖尔市乌拉特前旗中考押题数学预测卷含解析,共23页。试卷主要包含了答题时请按要求用笔,实数的相反数是等内容,欢迎下载使用。