山东省德州市宁津县重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析
展开2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
A.AB=ADB.AC平分∠BCD
C.AB=BDD.△BEC≌△DEC
2.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
A.0B.2.5C.3 D.5
3.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:
弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;
其中正确说法的个数为( )
A.4B.3C.2D.1
4.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为( )
A.–1 B.2 C.1 D.–2
5.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C.D.
6.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.
A.6055B.6056C.6057D.6058
7.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是
A.第一象限B.第二象限C.第三象限D.第四象限
8.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )
A.B.
C.D.
9.一个数和它的倒数相等,则这个数是( )
A.1B.0C.±1D.±1和0
10.某商品价格为元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )
A.0.96元B.0.972元C.1.08元D.元
二、填空题(本大题共6个小题,每小题3分,共18分)
11.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为___________________ .
12.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
13.计算:cs245°-tan30°sin60°=______.
14.|-3|=_________;
15.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.
16.如图的三角形纸片中,,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则的周长为__________.
三、解答题(共8题,共72分)
17.(8分)观察与思考:阅读下列材料,并解决后面的问题
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
根据上述材料,完成下列各题.
(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A= ;AC= ;
(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,≈2.449)
18.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.
19.(8分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.
(1)求抛物线的解析式;
(2)点P为直线AC上方抛物线上一动点;
①连接PO,交AC于点E,求的最大值;
②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
20.(8分)解不等式组:并写出它的所有整数解.
21.(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
22.(10分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).
23.(12分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.
24.如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,
∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.
在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,
∴Rt△BCE≌Rt△DCE(HL).
∴选项ABD都一定成立.
故选C.
2、C
【解析】
解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
综上,可得:a=0、2.5或5,∴a不可能是1.
故选C.
【点睛】
本题考查中位数;算术平均数.
3、C
【解析】
根据基本作图的方法即可得到结论.
【详解】
解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;
(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;
(3)弧③是以A为圆心,大于AB的长为半径所画的弧,错误;
(4)弧④是以P为圆心,任意长为半径所画的弧,正确.
故选C.
【点睛】
此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.
4、C
【解析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.
【详解】
把x=1代入x2+mx+n=0,
代入1+m+n=0,
∴m+n=-1,
∴m2+2mn+n2=(m+n)2=1.
故选C.
【点睛】
本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.
5、A
【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
6、D
【解析】
设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
【详解】
设第n个图形有an个〇(n为正整数),
观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,
∴an=1+3n(n为正整数),
∴a2019=1+3×2019=1.
故选:D.
【点睛】
此题考查规律型:图形的变化,解题关键在于找到规律
7、A
【解析】
∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,
∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.
∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:
①当,时,函数的图象经过第一、二、三象限;
②当,时,函数的图象经过第一、三、四象限;
③当,时,函数的图象经过第一、二、四象限;
④当,时,函数的图象经过第二、三、四象限.
因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.
8、C
【解析】
试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.
考点:二次函数图象与几何变换.
9、C
【解析】
根据倒数的定义即可求解.
【详解】
的倒数等于它本身,故符合题意.
故选:.
【点睛】
主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
10、B
【解析】
提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.
【详解】
第一次降价后的价格为a×(1-10%)=0.9a元,
第二次降价后的价格为0.9a×(1-10%)=0.81a元,
∴提价20%的价格为0.81a×(1+20%)=0.972a元,
故选B.
【点睛】
本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
【分析】牛、羊每头各值金两、两,根据等量关系:“牛5头,羊2头,共值金10两”,“牛2头,羊5头,共值金8两”列方程组即可.
【详解】牛、羊每头各值金两、两,由题意得:
,
故答案为:.
【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是关键.
12、1
【解析】
联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
【详解】
联立得:,
①×2+②,得:10x=20,
解得:x=2,
将x=2代入①,得:1-y=1,
解得:y=0,
则,
将x=2、y=0代入,得:,
解得:,
则mn=1,
故答案为1.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
13、0
【解析】
直接利用特殊角的三角函数值代入进而得出答案.
【详解】
= .
故答案为0.
【点睛】
此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.
14、1
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-1|=1.
故答案为1.
15、
【解析】
分析:
由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.
详解:
∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,
∴抽到有理数的概率是:.
故答案为.
点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.
16、
【解析】
由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.
【详解】
∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,
∴BE=BC,DE=DC,
∴的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,
故答案是:
【点睛】
本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.
三、解答题(共8题,共72分)
17、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里.
【解析】
(1)利用题目总结的正弦定理,将有关数据代入求解即可;
(2)在△ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可.
【详解】
(1)由正玄定理得:∠A=60°,AC=20;
故答案为60°,20;
(2)如图:
依题意,得BC=40×0.5=20(海里).
∵CD∥BE,
∴∠DCB+∠CBE=180°.
∵∠DCB=30°,∴∠CBE=150°.
∵∠ABE=75°,∴∠ABC=75°,
∴∠A=45°.
在△ABC中,,
即,
解得AB=10≈24.49(海里).
答:渔政船距海岛A的距离AB约为24.49海里.
【点睛】
本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点.
18、(1);(2).
【解析】
试题分析:(1)根据概率公式可得;
(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.
解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,
∴抽到数字“﹣1”的概率为;
(2)画树状图如下:
由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,
∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.
19、(1);(2)①有最大值1;②(2,3)或(,)
【解析】
(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;
(2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.
【详解】
(1)当x=0时,y=2,即C(0,2),
当y=0时,x=4,即A(4,0),
将A,C点坐标代入函数解析式,得
,
解得,
抛物线的解析是为;
(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N
,
∵直线PN∥y轴,
∴△PEM~△OEC,
∴
把x=0代入y=-x+2,得y=2,即OC=2,
设点P(x,-x2+x+2),则点M(x,-x+2),
∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,
∴=,
∵0<x<4,∴当x=2时,=有最大值1.
②∵A(4,0),B(-1,0),C(0,2),
∴AC=2,BC=,AB=5,
∴AC2+BC2=AB2,
∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,
∴D(,0),
∴DA=DC=DB=,
∴∠CDO=2∠BAC,
∴tan∠CDO=tan(2∠BAC)=,
过P作x轴的平行线交y轴于R,交AC的延长线于G,
情况一:如图
,
∴∠PCF=2∠BAC=∠PGC+∠CPG,
∴∠CPG=∠BAC,
∴tan∠CPG=tan∠BAC=,
即,
令P(a,-a2+a+2),
∴PR=a,RC=-a2+a,
∴,
∴a1=0(舍去),a2=2,
∴xP=2,-a2+a+2=3,P(2,3)
情况二,∴∠FPC=2∠BAC,
∴tan∠FPC=,
设FC=4k,
∴PF=3k,PC=5k,
∵tan∠PGC=,
∴FG=6k,
∴CG=2k,PG=3k,
∴RC=k,RG=k,PR=3k-k=k,
∴,
∴a1=0(舍去),a2=,
xP=,-a2+a+2=,即P(,),
综上所述:P点坐标是(2,3)或(,).
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.
20、原不等式组的解集为,它的所有整数解为0,1.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.
【详解】
解:,
解不等式①,得,
解不等式②,得x<2,
∴原不等式组的解集为,
它的所有整数解为0,1.
【点睛】
本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
21、(1)-6;(2).
【解析】
(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;
(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.
【详解】
解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上,
∴,解得:;
(2)由(1)知反比例函数解析式为,∵n=3,∴点B(﹣2,3)、D(﹣6,1),
如图,过点D作DE⊥BC于点E,延长DE交AB于点F,
在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,
∴△DBE≌△FBE(ASA),∴DE=FE=4,
∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,
∴,解得:,
∴.
【点睛】
本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.
22、旗杆AB的高为(4+1)m.
【解析】
试题分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.
试题解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.
在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cs∠DBF==.
∵BD=8,∴DF=4,BF=.
∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.
在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).
答:旗杆AB的高为(4+1)m.
23、(1)m≤1;(2)3≤m≤1.
【解析】
试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.
试题解析:
(1)根据题意得△=(-6)2-1(2m+1)≥0,
解得m≤1;
(2)根据题意得x1+x2=6,x1x2=2m+1,
而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20, 解得m≥3,
而m≤1,所以m的范围为3≤m≤1.
24、证明见解析
【解析】
根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.
【详解】
∵EA⊥AB,EC⊥BC,
∴∠EAB=∠ECB=90°,
在Rt△EAB与Rt△ECB中
,
∴Rt△EAB≌Rt△ECB,
∴AB=CB,∠ABE=∠CBE,
∵BD=BD,
在△ABD与△CBD中
,
∴△ABD≌△CBD,
∴AD=CD.
【点睛】
本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.
山东省德州市宁津县重点达标名校2021-2022学年中考数学全真模拟试卷含解析: 这是一份山东省德州市宁津县重点达标名校2021-2022学年中考数学全真模拟试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算结果为a6的是,下列图形是中心对称图形的是等内容,欢迎下载使用。
江苏省扬中市重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省扬中市重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022学年山西省怀仁市重点达标名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2021-2022学年山西省怀仁市重点达标名校初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了sin60°的值为,下列各数中负数是等内容,欢迎下载使用。