![辽宁省大石桥市2022年中考二模数学试题含解析01](http://img-preview.51jiaoxi.com/2/3/13140205/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![辽宁省大石桥市2022年中考二模数学试题含解析02](http://img-preview.51jiaoxi.com/2/3/13140205/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![辽宁省大石桥市2022年中考二模数学试题含解析03](http://img-preview.51jiaoxi.com/2/3/13140205/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
辽宁省大石桥市2022年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )
A.14 B.12 C.12或14 D.以上都不对
2.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=( )
A.40° B.110° C.70° D.140°
3.的倒数是( )
A. B.3 C. D.
4.下列各组数中,互为相反数的是( )
A.﹣2 与2 B.2与2 C.3与 D.3与3
5.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为( )
A.﹣=100 B.﹣=100
C.﹣=100 D.﹣=100
6.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )
A.140° B.160° C.170° D.150°
7.内角和为540°的多边形是( )
A. B. C. D.
8.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是( )
A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×1010
9.实数4的倒数是( )
A.4 B. C.﹣4 D.﹣
10.的绝对值是( )
A.﹣4 B. C.4 D.0.4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.
12.用一条长 60 cm 的绳子围成一个面积为 216的矩形.设矩形的一边长为 x cm,则可列方程为______.
13.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为________.
14.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是
15.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
16.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.
三、解答题(共8题,共72分)
17.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
18.(8分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
19.(8分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站 | A | B | C | D | E |
X(千米) | 8 | 9 | 10 | 11.5 | 13 |
(分钟) | 18 | 20 | 22 | 25 | 28 |
(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
20.(8分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价(元)取整数,用(元)表示该店每天的利润.若每份套餐售价不超过10元.
①试写出与的函数关系式;
②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.
21.(8分)如下表所示,有A、B两组数:
| 第1个数 | 第2个数 | 第3个数 | 第4个数 | …… | 第9个数 | …… | 第n个数 |
A组 | ﹣6 | ﹣5 | ﹣2 |
| …… | 58 | …… | n2﹣2n﹣5 |
B组 | 1 | 4 | 7 | 10 | …… | 25 | …… |
|
(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
22.(10分)计算:-2-2 - + 0
23.(12分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
(1)直接写出甲投放的垃圾恰好是A类的概率;
(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
24.清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?
译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
解方程得:x=5或x=1.
当x=1时,3+4=1,不能组成三角形;
当x=5时,3+4>5,三边能够组成三角形.
∴该三角形的周长为3+4+5=12,
故选B.
2、B
【解析】
先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
【详解】
∵AB∥CD,
∴∠ACD+∠BAC=180°,
∵∠ACD=40°,
∴∠BAC=180°﹣40°=140°,
∵AE平分∠CAB,
∴∠BAE=∠BAC=×140°=70°,
∴∠DEA=180°﹣∠BAE=110°,
故选B.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
3、A
【解析】
解:的倒数是.
故选A.
【点睛】
本题考查倒数,掌握概念正确计算是解题关键.
4、A
【解析】
根据只有符号不同的两数互为相反数,可直接判断.
【详解】
-2与2互为相反数,故正确;
2与2相等,符号相同,故不是相反数;
3与互为倒数,故不正确;
3与3相同,故不是相反数.
故选:A.
【点睛】
此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.
5、B
【解析】
【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.
【详解】科普类图书平均每本的价格是x元,则可列方程为:
﹣=100,
故选B.
【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
6、B
【解析】
试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.
考点:角度的计算
7、C
【解析】
试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.
考点:多边形内角与外角.
8、B
【解析】
根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.
【详解】
29.8亿用科学记数法表示为: 29.8亿=2980000000=2.98×1.
故选B.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、B
【解析】
根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
【详解】
解:实数4的倒数是:
1÷4=.
故选:B.
【点睛】
此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
10、B
【解析】
分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
详解:因为-的相反数为
所以-的绝对值为.
故选:B
点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2
【解析】
首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.
【详解】
解:连接BD,
∵AB是⊙O的直径,
∴∠C=∠D=90°,
∵∠BAC=60°,弦AD平分∠BAC,
∴∠BAD=∠BAC=30°,
∴在Rt△ABD中,AB==4,
∴在Rt△ABC中,AC=AB•cos60°=4×=2.
故答案为2.
12、
【解析】
根据周长表达出矩形的另一边,再根据矩形的面积公式即可列出方程.
【详解】
解:由题意可知,矩形的周长为60cm,
∴矩形的另一边为:,
∵面积为 216,
∴
故答案为:.
【点睛】
本题考查了一元二次方程与实际问题,解题的关键是找出等量关系.
13、a≥﹣1且a≠1
【解析】
利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣)≥1,然后求出两个不等式的公共部分即可.
【详解】
根据题意得a≠1且△=(﹣1)2﹣4a•(﹣)≥1,解得:a≥﹣1且a≠1.
故答案为a≥﹣1且a≠1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
14、4
【解析】
当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.
【详解】
当CD∥AB时,PM长最大,连接OM,OC,
∵CD∥AB,CP⊥CD,
∴CP⊥AB,
∵M为CD中点,OM过O,
∴OM⊥CD,
∴∠OMC=∠PCD=∠CPO=90°,
∴四边形CPOM是矩形,
∴PM=OC,
∵⊙O直径AB=8,
∴半径OC=4,
即PM=4.
【点睛】
本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
15、4.027
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:4 0270 0000用科学记数法表示是4.027×1.
故答案为4.027×1.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
16、
【解析】
首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
列表得:
第一次 第二次 | 黑 | 白 | 白 |
黑 | 黑,黑 | 白,黑 | 白,黑 |
白 | 黑,白 | 白,白 | 白,白 |
白 | 黑,白 | 白,白 | 白,白 |
∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,
∴两次都摸到黑球的概率是.
故答案为:.
【点睛】
考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.
三、解答题(共8题,共72分)
17、(1)(2).
【解析】
(1)根据总共三种,A只有一种可直接求概率;
(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
【详解】
解: (1)甲投放的垃圾恰好是A类的概率是.
(2)列出树状图如图所示:
由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
18、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
【解析】
(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
【详解】
(1)∵△CDE是等边三角形,
∴∠CED=60°,
∴∠EDB=60°﹣∠B=10°,
∴∠EDB=∠B,
∴DE=EB;
(2) ED=EB, 理由如下:
取AB的中点O,连接CO、EO,
∵∠ACB=90°,∠ABC=10°,
∴∠A=60°,OC=OA,
∴△ACO为等边三角形,
∴CA=CO,
∵△CDE是等边三角形,
∴∠ACD=∠OCE,
∴△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,
∴△COE≌△BOE,
∴EC=EB,
∴ED=EB;
(1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,△COE≌△BOE,
∴EC=EB,
∴ED=EB,
∵EH⊥AB,
∴DH=BH=1,
∵GE∥AB,
∴∠G=180°﹣∠A=120°,
∴△CEG≌△DCO,
∴CG=OD,
设CG=a,则AG=5a,OD=a,
∴AC=OC=4a,
∵OC=OB,
∴4a=a+1+1,
解得,a=2,
即CG=2.
19、 (1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.
【解析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.
【详解】
(1)设y1=kx+b,将(8,18),(9,20),代入
y1=kx+b,得:
解得
所以y1关于x的函数解析式为y1=2x+2.
(2)设李华从文化宫回到家所需的时间为y,则
y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.
所以当x=9时,y取得最小值,最小值为39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
【点睛】
本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.
20、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能, 11元.
【解析】
(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.
【详解】
解:(1)①y=400(x﹣5)﹣2.(5<x≤10),
②依题意得:400(x﹣5)﹣2≥800, 解得:x≥8.5,
∵5<x≤10,且每份套餐的售价x(元)取整数, ∴每份套餐的售价应不低于9元.
(2)依题意可知:每份套餐售价提高到10元以上时,
y=(x﹣5)[400﹣40(x﹣10)]﹣2,
当y=1560时, (x﹣5)[400﹣40(x﹣10)]﹣2=1560,
解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.
故该套餐售价应定为11元.
【点睛】
本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.
21、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析
【解析】
(1)将n=4代入n2-2n-5中即可求解;
(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;
(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.
【详解】
解:(1))∵A组第n个数为n2-2n-5,
∴A组第4个数是42-2×4-5=3,
故答案为3;
(2)第n个数是.
理由如下:
∵第1个数为1,可写成3×1-2;
第2个数为4,可写成3×2-2;
第3个数为7,可写成3×3-2;
第4个数为10,可写成3×4-2;
……
第9个数为25,可写成3×9-2;
∴第n个数为3n-2;
故答案为3n-2;
(3)不存在同一位置上存在两个数据相等;
由题意得,,
解之得,
由于是正整数,所以不存在列上两个数相等.
【点睛】
本题考查了数字的变化类,正确的找出规律是解题的关键.
22、
【解析】
直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.
【详解】
解:原式=
【点睛】
本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.
23、(1)(2).
【解析】
(1)根据总共三种,A只有一种可直接求概率;
(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
【详解】
解: (1)甲投放的垃圾恰好是A类的概率是.
(2)列出树状图如图所示:
由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
24、每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩.
【解析】
设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.
【详解】
解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩.
可列方程组为
解得
答:每亩山田相当于实田0.9亩,每亩场地相当于实田亩.
2023年辽宁省大石桥市第二初级中学中学三模数学试题(含解析): 这是一份2023年辽宁省大石桥市第二初级中学中学三模数学试题(含解析),共33页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省大石桥市实验中学中学三模数学试题(含解析): 这是一份2023年辽宁省大石桥市实验中学中学三模数学试题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年辽宁省营口市大石桥市石佛中学中考适应性考试数学试题含解析: 这是一份2022年辽宁省营口市大石桥市石佛中学中考适应性考试数学试题含解析,共18页。试卷主要包含了的倒数的绝对值是,把a•的根号外的a移到根号内得等内容,欢迎下载使用。