江苏省盐城市大丰区第一共同体2022年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.二次函数y=﹣(x+2)2﹣1的图象的对称轴是( )
A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣2
2.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:
尺码/cm | 21.5 | 22.0 | 22.5 | 23.0 | 23.5 |
人数 | 2 | 4 | 3 | 8 | 3 |
学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是( )
A.平均数 B.加权平均数 C.众数 D.中位数
3.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
A.70° B.65° C.50° D.25°
4.函数y=中,自变量x的取值范围是( )
A.x>3 B.x<3 C.x=3 D.x≠3
5.关于反比例函数y=,下列说法中错误的是( )
A.它的图象是双曲线
B.它的图象在第一、三象限
C.y的值随x的值增大而减小
D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
6.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是( )
A.①②③④ B.②④ C.①②③ D.①③④
7.点M(a,2a)在反比例函数y=的图象上,那么a的值是( )
A.4 B.﹣4 C.2 D.±2
8.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
9.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
10.已知一个多边形的内角和是1080°,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.
12.分解因式:a3-a=
13.分解因式:=___________.
14.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.
15.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
16.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.
三、解答题(共8题,共72分)
17.(8分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.
18.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
19.(8分)如图,在△ABC中,
(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).
(2)在(1)条件下,求证:AB2=BD•BC.
20.(8分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(1)条件下,四边形AODC的面积为多少?
21.(8分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.
基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.
(1)在点,,,中,抛物线的关联点是_____ ;
(2)如图2,在矩形ABCD中,点,点,
①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;
②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.
22.(10分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:
购买量x(千克) | 1 | 1.5 | 2 | 2.5 | 3 |
付款金额y(元) | a | 7.5 | 10 | 12 | b |
(1)由表格得:a= ; b= ;
(2)求y关于x的函数解析式;
(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?
23.(12分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.
(1)求证:∠PBA=∠C;
(2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.
24.已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据二次函数顶点式的性质解答即可.
【详解】
∵y=﹣(x+2)2﹣1是顶点式,
∴对称轴是:x=-2,
故选D.
【点睛】
本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.
2、C
【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
3、C
【解析】
首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
【详解】
解:∵AD∥BC,
∴∠EFB=∠FED=65°,
由折叠的性质知,∠DEF=∠FED′=65°,
∴∠AED′=180°-2∠FED=50°,
故选:C.
【点睛】
此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
4、D
【解析】
由题意得,x﹣1≠0,
解得x≠1.
故选D.
5、C
【解析】
根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
【详解】
A.反比例函数的图像是双曲线,正确;
B.k=2>0,图象位于一、三象限,正确;
C.在每一象限内,y的值随x的增大而减小,错误;
D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
故选C.
【点睛】
本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
6、A
【解析】
分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;
详解:∵∠DAE=∠BAC=90°,
∴∠DAB=∠EAC
∵AD=AE,AB=AC,
∴△DAB≌△EAC,
∴BD=CE,∠ABD=∠ECA,故①正确,
∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,
∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,
∴∠CEB=90°,即CE⊥BD,故③正确,
∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,
故选A.
点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
7、D
【解析】
根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.
【详解】
因为点M(a,2a)在反比例函数y=的图象上,可得:
,
,
解得:,
故选D.
【点睛】
本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.
8、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
9、A
【解析】
试题分析:不可能事件发生的概率为0,故A正确;
随机事件发生的概率为在0到1之间,故B错误;
概率很小的事件也可能发生,故C错误;
投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
故选A.
考点:随机事件.
10、D
【解析】
根据多边形的内角和=(n﹣2)•180°,列方程可求解.
【详解】
设所求多边形边数为n,
∴(n﹣2)•180°=1080°,
解得n=8.
故选D.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、或
【解析】
分析:依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.
详解:分两种情况:
①如图,当∠CDM=90°时,△CDM是直角三角形,
∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,
∴∠C=30°,AB=AC=+2,
由折叠可得,∠MDN=∠A=60°,
∴∠BDN=30°,
∴BN=DN=AN,
∴BN=AB=,
∴AN=2BN=,
∵∠DNB=60°,
∴∠ANM=∠DNM=60°,
∴∠AMN=60°,
∴AN=MN=;
②如图,当∠CMD=90°时,△CDM是直角三角形,
由题可得,∠CDM=60°,∠A=∠MDN=60°,
∴∠BDN=60°,∠BND=30°,
∴BD=DN=AN,BN=BD,
又∵AB=+2,
∴AN=2,BN=,
过N作NH⊥AM于H,则∠ANH=30°,
∴AH=AN=1,HN=,
由折叠可得,∠AMN=∠DMN=45°,
∴△MNH是等腰直角三角形,
∴HM=HN=,
∴MN=,
故答案为:或.
点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
12、
【解析】
a3-a=a(a2-1)=
13、
【解析】
直接利用完全平方公式分解因式得出答案.
【详解】
解:=,
故答案为.
【点睛】
此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.
14、10%
【解析】
设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.
【详解】
设平均每次上调的百分率是x,
依题意得,
解得:,(不合题意,舍去).
答:平均每次上调的百分率为10%.
故答案是:10%.
【点睛】
此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
15、4或8
【解析】
由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。
【详解】
设AA′=x,AC与A′B′相交于点E,
∵△ACD是正方形ABCD剪开得到的,
∴△ACD是等腰直角三角形,
∴∠A=45∘,
∴△AA′E是等腰直角三角形,
∴A′E=AA′=x,
A′D=AD−AA′=12−x,
∵两个三角形重叠部分的面积为32,
∴x(12−x)=32,
整理得,x−12x+32=0,
解得x=4,x=8,
即移动的距离AA′等4或8.
【点睛】
本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.
16、8π
【解析】
试题分析:∵弧的半径为24,所对圆心角为60°,
∴弧长为l==8π.
故答案为8π.
【考点】弧长的计算.
三、解答题(共8题,共72分)
17、1.5千米
【解析】
先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可
【详解】
在△ABC与△AMN中,,,
∴,
∵∠A=∠A,
∴△ABC∽△ANM,
∴,即,解得MN=1.5(千米) ,
因此,M、N两点之间的直线距离是1.5千米.
【点睛】
此题考查相似三角形的应用,解题关键在于掌握运算法则
18、(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
19、(1)作图见解析;(2)证明见解析;
【解析】
(1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.
【详解】
(1)如图,∠BAD为所作;
(2)∵∠BAD=∠C,∠B=∠B
∴△ABD∽△CBA,
∴AB:BC=BD:AB,
∴AB2=BD•BC.
【点睛】
本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.
20、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1.
【解析】
试题分析:
(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;
(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;
(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.
试题解析:
(1)∵A(0,2),BC∥x轴,
∴B(﹣1,2),C(3,2),
∴AB=1,CA=3,
∴线段AB与线段CA的长度之比为;
(2)∵B是函数y=﹣(x<0)的一点,C是函数y=(x>0)的一点,
∴B(﹣,a),C(,a),
∴AB=,CA=,
∴线段AB与线段CA的长度之比为;
(3)∵=,
∴=,
又∵OA=a,CD∥y轴,
∴,
∴CD=4a,
∴四边形AODC的面积为=(a+4a)×=1.
21、 (1) (2)① ②
【解析】
【分析】(1)根据关联点的定义逐一进行判断即可得;
(2))①当时,,,,,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得;
②由①知,分两种情况画出图形进行讨论即可得.
【详解】(1),x=2时,y==1,此时P(2,1),则d=1+2=3,符合定义,是关联点;
,x=1时,y==,此时P(1,),则d=+=3,符合定义,是关联点;
,x=4时,y==4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;
,x=0时,y==0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,
故答案为;
(2)①当时,,,,,
此时矩形上的所有点都在抛物线的下方,
∴,
∴,
∵,
∴;
②由①,,
如图2所示时,CF最长,当CF=4时,即=4,解得:t=,
如图3所示时,DF最长,当DF=4时,即DF==4,解得 t=,
故答案为
【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.
22、(1)5,1 (2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2 (3)1.6元.
【解析】
(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
(2)分段函数,当0≤x≤2时,设线段OA的解析式为y=kx;当x>2时,设关系式为y=k1x+b,然后将(2,10),且x=3时,y=1,代入关系式即可求出k,b的值,从而确定关系式;
(3)代入(2)的解析式即可解答.
【详解】
解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,
∵10÷2=5,
∴a=5,b=2×5+5×0.8=1.
故答案为a=5,b=1.
(2)当0≤x≤2时,设线段OA的解析式为y=kx,
∵y=kx的图象经过(2,10),
∴2k=10,解得k=5,
∴y=5x;
当x>2时,设y与x的函数关系式为:y=x+b
∵y=kx+b的图象经过点(2,10),且x=3时,y=1,
,解得,
∴当x>2时,y与x的函数关系式为:y=4x+2.
∴y关于x的函数解析式为: ;
(3)甲农户将8元钱全部用于购买该玉米种子,即5x=8,解得x=1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y=4×5.6+2=24.4元.
(8+4×4+2)−24.4=1.6(元).
答:如果他们两人合起来购买,可以比分开购买节约1.6元.
【点睛】
本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.
23、 (1)证明见解析;(2)BC=1.
【解析】
(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;
(2)求出△ABC∽△PBO,得出比例式,代入求出即可.
【详解】
(1)连接OB,
∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,
∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,
∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;
(2)∵⊙O的半径是3 ,
∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,
∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,∴=,∴=,∴BC=1.
【点睛】
本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.
24、(1)证明见解析(2)m=1或m=-1
【解析】
试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
(2)先利用求根公式得到然后利用有理数的整除性确定整数的值.
试题解析:(1)证明:∵m≠0,
∴方程为一元二次方程,
∴此方程总有两个不相等的实数根;
(2)∵
∵方程的两个实数根都是整数,且m是整数,
∴m=1或m=−1.
江苏省盐城市大丰区第一共同体2021-2022学年中考适应性考试数学试题含解析: 这是一份江苏省盐城市大丰区第一共同体2021-2022学年中考适应性考试数学试题含解析,共26页。试卷主要包含了下列实数中,有理数是,实数 的相反数是等内容,欢迎下载使用。
江苏省盐城市大丰区第一共同体2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省盐城市大丰区第一共同体2021-2022学年中考数学考前最后一卷含解析,共25页。试卷主要包含了计算3a2-a2的结果是,下列方程中,没有实数根的是等内容,欢迎下载使用。
2022年江苏省盐城市大丰区第一共同体达标名校中考押题数学预测卷含解析: 这是一份2022年江苏省盐城市大丰区第一共同体达标名校中考押题数学预测卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,花园甜瓜是乐陵的特色时令水果,计算-3-1的结果是,的相反数是等内容,欢迎下载使用。