还剩9页未读,
继续阅读
所属成套资源:2023版物理高考人教版一轮复习讲义【解析版】
成套系列资料,整套一键下载
2023版步步高物理一轮复习讲义第四章 专题强化七 圆周运动的临界问题
展开
专题强化七 圆周运动的临界问题目标要求 1.掌握水平面内、竖直面内的圆周运动的动力学问题的分析方法.2.会分析水平面内、竖直面内圆周运动的临界问题.题型一 水平面内圆周运动的临界问题1.运动特点(1)运动轨迹是水平面内的圆.(2)合外力沿水平方向指向圆心,提供向心力,竖直方向合力为零,物体在水平面内做匀速圆周运动.2.过程分析重视过程分析,在水平面内做圆周运动的物体,当转速变化时,物体的受力可能发生变化,转速继续变化,会出现绳子张紧、绳子突然断裂、静摩擦力随转速增大而逐渐达到最大值、弹簧弹力大小方向发生变化等,从而出现临界问题.3.方法突破(1)水平转盘上的物体恰好不发生相对滑动的临界条件是物体与盘间恰好达到最大静摩擦力.(2)物体间恰好分离的临界条件是物体间的弹力恰好为零.(3)绳的拉力出现临界条件的情形有:绳恰好拉直意味着绳上无弹力;绳上拉力恰好为最大承受力等.4.解决方法当确定了物体运动的临界状态和临界条件后,要分别针对不同的运动过程或现象,选择相对应的物理规律,然后再列方程求解.例1 (2018·浙江11月选考·9)如图所示,一质量为2.0×103 kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104 N,当汽车经过半径为80 m的弯道时,下列判断正确的是( )A.汽车转弯时所受的力有重力、弹力、摩擦力和向心力B.汽车转弯的速度为20 m/s时所需的向心力为1.4×104 NC.汽车转弯的速度为20 m/s时汽车会发生侧滑D.汽车能安全转弯的向心加速度不超过7.0 m/s2答案 D解析 汽车转弯时所受的力有重力、弹力、摩擦力,向心力是由摩擦力提供的,A错误;汽车转弯的速度为20 m/s时,根据Fn=meq \f(v2,R),得所需的向心力为1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C错误;汽车安全转弯时的最大向心加速度为am=eq \f(Ff,m)=7.0 m/s2,D正确.例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=eq \r(\f(kg,2l))是b开始滑动的临界角速度D.当ω=eq \r(\f(2kg,3l))时,a所受摩擦力的大小为kmg答案 AC解析 小木块a、b做圆周运动时,由静摩擦力提供向心力,即Ff=mω2R.当角速度增大时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:Ffa=mωa2l,当Ffa=kmg时,kmg=mωa2l,ωa=eq \r(\f(kg,l));对木块b:Ffb=mωb2·2l,当Ffb=kmg时,kmg=mωb2·2l,ωb=eq \r(\f(kg,2l)),eq \r(\f(kg,2l))是b开始滑动的临界角速度,所以b先达到最大静摩擦力,即b比a先开始滑动,选项A、C正确;两木块滑动前转动的角速度相同,则Ffa=mω2l,则Ffb=mω2·2l,Ffaeq \r(gR)时,小球在最低点与最高点对轨道的压力大小之差为5mg答案 B解析 当在最高点速度为零时,到达最低点的速度最小,对外管壁的压力最小,则由机械能守恒定律有mg·2R=eq \f(1,2)mv12,在最低点设外管壁对小球的支持力为F,由牛顿第二定律F-mg=meq \f(v12,R),联立解得F=5mg,由牛顿第三定律得,小球对外管壁的压力最小为5mg,故A错误;小球从静止沿轨道滑落,当滑落高度为eq \f(R,3)时,由机械能守恒定律有mgeq \f(R,3)=eq \f(1,2)mv22,设此时重力沿半径方向的分力为F1,由几何关系得F1=eq \f(2mg,3),此时所需的向心力为F向=meq \f(v22,R),联立解得F向=F1,此时重力沿半径方向的分力恰好提供向心力,所以小球与内、外管壁均没有作用力,故B正确;因为管内壁可以给小球支持力,所以小球在最高点的速度可以为零,故C错误;若在最高点速度v>eq \r(gR),在最高点时由牛顿第二定律得F2+mg=meq \f(v2,R),从最高点到最低点由机械能守恒定律得mg·2R=eq \f(1,2)mv32-eq \f(1,2)mv2,在最低点时由牛顿第二定律得F3-mg=meq \f(v32,R),联立解得F3-F2=6mg,所以当v>eq \r(gR)时,小球在最低点与最高点对轨道的压力大小之差为6mg,故D错误.8.如图所示,质量为m的小球由轻绳a和b分别系于一轻质细杆的B点和A点,绳a长为L,与水平方向成θ角时绳b恰好在水平方向伸直.当轻杆绕轴AB以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,a、b绳均拉直.重力加速度为g,则( )A.a绳的拉力可能为零B.a绳的拉力随角速度的增大而增大C.当角速度ω>eq \r(\f(g,Lsin θ))时,b绳中拉力不为零D.当角速度ω>eq \r(\f(g,Lsin θ))时,若a绳突然被剪断,则b绳仍可保持水平答案 C解析 小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a绳在竖直方向上的分力与小球重力相等,可知a绳的拉力不可能为零,A错误;根据竖直方向上受力平衡得Fasin θ=mg,解得Fa=eq \f(mg,sin θ),可知a绳的拉力不变,与角速度无关,B错误;当b绳拉力为零时,有eq \f(mg,tan θ)=mω2Lcos θ,解得ω=eq \r(\f(g,Lsin θ)),可知当角速度ω>eq \r(\f(g,Lsin θ))时,b绳出现拉力,C正确;若a绳突然被剪断,则b绳不能保持水平,D错误.9.(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的水平细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是(重力加速度为g)( )A.当ω>eq \r(\f(2Kg,3L))时,A、B会相对于转盘滑动B.当ω>eq \r(\f(Kg,2L)),绳子一定有弹力C.ω在eq \r(\f(Kg,2L))<ω<eq \r(\f(2Kg,3L))范围内增大时,B所受摩擦力变大D.ω在0<ω<eq \r(\f(2Kg,3L))范围内增大时,A所受摩擦力一直变大答案 ABD解析 当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,则有Kmg+Kmg=mω2L+mω2·2L,解得:ω=eq \r(\f(2Kg,3L)),A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即有:Kmg=m·2L·ω2,解得ω=eq \r(\f(Kg,2L)),可知当ω>eq \r(\f(Kg,2L))时,绳子有弹力,B项正确;当ω>eq \r(\f(Kg,2L))时,B已达到最大静摩擦力,则ω在eq \r(\f(Kg,2L))<ω<eq \r(\f(2Kg,3L))范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω<eq \r(\f(2Kg,3L))范围内,A相对转盘是静止的,A所受摩擦力为静摩擦力,所以由Ff-FT=mLω2可知,当ω增大时,静摩擦力也增大,D项正确.10.(多选)如图所示,竖直平面内有一半径为R=0.35 m的内壁光滑的圆形轨道,轨道底端与光滑水平面相切,一小球(可视为质点)以v0=3.5 m/s的初速度进入轨道,g=10 m/s2,则( )A.小球不会脱离圆轨道运动B.小球会脱离圆轨道运动C.小球脱离轨道时的速度为eq \f(\r(7),2) m/sD.小球脱离轨道的位置与圆心连线和水平方向间的夹角为30°答案 BCD解析 若小球恰能到达最高点,由重力提供向心力,则有:mg=meq \f(v2,R),解得:v=eq \r(gR)=eq \r(3.5) m/s,若小球从最低点恰好能到最高点,根据机械能守恒定律得:eq \f(1,2)mv0′2=mg·2R+eq \f(1,2)mv2,解得:v0′=eq \f(\r(70),2) m/s>v0=3.5 m/s,故小球不可能运动到最高点,小球会脱离圆轨道,故A错误,B正确;设当小球脱离轨道时,其位置与圆心连线和水平方向间的夹角为θ,小球此时只受重力作用,将重力分解如图所示.在脱离点,支持力等于0,由牛顿第二定律得:mgsin θ=meq \f(v12,R),从最低点到脱离点,由机械能守恒定律得:eq \f(1,2)mv02=mgR(1+sin θ)+eq \f(1,2)mv12,联立解得:sin θ=eq \f(1,2),即θ=30°,则v1=eq \r(gRsin θ)=eq \f(\r(7),2) m/s,故C、D正确.轻绳模型(最高点无支撑)轻杆模型(最高点有支撑)实例球与绳连接、水流星、沿内轨道运动的“过山车”等球与杆连接、球在光滑管道中运动等图示受力示意图 F弹向下或等于零F弹向下、等于零或向上力学方程mg+F弹=meq \f(v2,R)mg±F弹=meq \f(v2,R)临界特征F弹=0 mg=meq \f(vmin2,R)即vmin=eq \r(gR)v=0即F向=0F弹=mg讨论分析(1)最高点,若v≥eq \r(gR),F弹+mg=meq \f(v2,R),绳或轨道对球产生弹力F弹(2)若v<eq \r(gR),则不能到达最高点,即到达最高点前小球已经脱离了圆轨道(1)当v=0时,F弹=mg,F弹背离圆心(2)当0eq \r(gR)时,mg+F弹=meq \f(v2,R),F弹指向圆心并随v的增大而增大
相关资料
更多