|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省句容市重点名校2021-2022学年中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    江苏省句容市重点名校2021-2022学年中考数学考前最后一卷含解析01
    江苏省句容市重点名校2021-2022学年中考数学考前最后一卷含解析02
    江苏省句容市重点名校2021-2022学年中考数学考前最后一卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省句容市重点名校2021-2022学年中考数学考前最后一卷含解析

    展开
    这是一份江苏省句容市重点名校2021-2022学年中考数学考前最后一卷含解析,共24页。试卷主要包含了的一个有理化因式是,下列说法不正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为(  )

    A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)
    2.的倒数的绝对值是(  )
    A. B. C. D.
    3.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为(  )

    A.1 B. C.-1 D.+1
    4.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )

    A.2 B. C. D.
    5.的一个有理化因式是(  )
    A. B. C. D.
    6.如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( )

    A. B. C. D.
    7.下列说法不正确的是( )
    A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖
    B.了解一批电视机的使用寿命适合用抽样调查
    C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定
    D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件
    8.将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )
    A. B.
    C. D.
    9.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是(  )

    A.60° B.45° C.15° D.90°
    10.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是(  )

    A.点A与点B B.点A与点D C.点B与点D D.点B与点C
    11.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为(  )
    A.1 B.2 C.3 D.4
    12.比1小2的数是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为
      ▲  辆.
    14.分解因式=________,=__________.
    15.如图,在△ABC中,BC=7,,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.

    16.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.
    17.请看杨辉三角(1),并观察下列等式(2):

    根据前面各式的规律,则(a+b)6= .
    18.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦•爱国情•成才志”中华经典诗文诵读比赛.九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A、B两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A箱中放置3个黄球和2个白球;B箱中放置1个黄球,3个白球,丽丽从A箱中摸一个球,张强从B箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止.
    根据以上规则回答下列问题:
    (1)求一次性摸出一个黄球和一个白球的概率;
    (2)判断该游戏是否公平?并说明理由.
    20.(6分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.

    (1)求证:AE=BF;(2)若BE=,AG=2,求正方形的边长.
    21.(6分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)
    x
    ﹣1
    0
    1
    ax2


    1
    ax2+bx+c
    7
    2

    (1)求抛物线y=ax2+bx+c的表达式
    (2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;
    (3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.

    22.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.

    23.(8分)解不等式组
    请结合题意填空,完成本题的解答.
    (I)解不等式(1),得   ;
    (II)解不等式(2),得   ;
    (III)把不等式①和②的解集在数轴上表示出来:
    (IV)原不等式组的解集为   .

    24.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
    25.(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.
    26.(12分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
    根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
    27.(12分)如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;
    (1)求c与b的函数关系式;
    (2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;
    (3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    连接AC,如图所示.
    ∵四边形OABC是菱形,
    ∴OA=AB=BC=OC.
    ∵∠ABC=60°,
    ∴△ABC是等边三角形.
    ∴AC=AB.
    ∴AC=OA.
    ∵OA=1,
    ∴AC=1.
    画出第5次、第6次、第7次翻转后的图形,如图所示.
    由图可知:每翻转6次,图形向右平移2.
    ∵3=336×6+1,
    ∴点B1向右平移1322(即336×2)到点B3.
    ∵B1的坐标为(1.5, ),
    ∴B3的坐标为(1.5+1322,),
    故选B.

    点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.
    2、D
    【解析】
    直接利用倒数的定义结合绝对值的性质分析得出答案.
    【详解】
    解:−的倒数为−,则−的绝对值是:.
    故答案选:D.
    【点睛】
    本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.
    3、C
    【解析】
    【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
    【详解】∵DE∥BC,
    ∴∠ADE=∠B,∠AED=∠C,
    ∴△ADE∽△ABC,
    ∴,
    ∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
    ∴,
    ∴,
    故选C.
    【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
    4、C
    【解析】
    解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.

    点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
    5、B
    【解析】
    找出原式的一个有理化因式即可.
    【详解】
    的一个有理化因式是,
    故选B.
    【点睛】
    此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.
    6、D
    【解析】
    求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
    【详解】
    把,代入反比例函数 ,得:,,

    在中,由三角形的三边关系定理得:,
    延长交轴于,当在点时,,

    即此时线段与线段之差达到最大,
    设直线的解析式是,
    把,的坐标代入得:,
    解得:,
    直线的解析式是,
    当时,,即,
    故选D.
    【点睛】
    本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.
    7、A
    【解析】
    试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.
    试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;
    B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;
    C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;
    D、袋中没有黑球,摸出黑球是不可能事件,故正确.
    故选A.
    考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.
    8、A
    【解析】
    根据二次函数的平移规律即可得出.
    【详解】
    解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为
    故答案为:A.
    【点睛】
    本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.
    9、C
    【解析】
    试题解析:∵sin∠CAB=
    ∴∠CAB=45°.
    ∵,
    ∴∠C′AB′=60°.
    ∴∠CAC′=60°-45°=15°,
    鱼竿转过的角度是15°.
    故选C.
    考点:解直角三角形的应用.
    10、A
    【解析】
    试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:
    倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
    倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.
    故选A.
    考点:1.倒数的定义;2.数轴.
    11、C
    【解析】
    先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
    【详解】
    去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
    方程①的根的情况有两种:
    (1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
    解得a=.
    当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
    (2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
    (i)当x=1时,代入①式得3﹣a=1,即a=3.
    当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
    而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
    (ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
    当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
    x1是增根,故x=﹣为方程的唯一实根;
    因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
    故选C.
    【点睛】
    考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.
    12、C
    【解析】
    1-2=-1,故选C

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2.85×2.
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).
    【详解】
    解:28500000一共8位,从而28500000=2.85×2.
    14、
    【解析】
    此题考查因式分解

    答案
    点评:利用提公因式、平方差公式、完全平方公式分解因式
    15、
    【解析】
    分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围.
    详解:作AD⊥BC于点D,作PE⊥BC于点E.∵在△ABC 中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案为0<PB<.

    点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    16、
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    67000000000的小数点向左移动10位得到6.7,
    所以67000000000用科学记数法表示为,
    故答案为:.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    17、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
    【解析】
    通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
    【详解】
    通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
    所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
    18、a≤且a≠1.
    【解析】
    根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.
    【详解】
    由题意得:△≥0,即(-1)2-4(a-1)×1≥0,
    解得a≤,
    又a-1≠0,
    ∴a≤且a≠1.
    故答案为a≤且a≠1.
    点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1);(2)不公平,理由见解析.
    【解析】
    (1)画树状图列出所有等可能结果数,找到摸出一个黄球和一个白球的结果数,根据概率公式可得答案;
    (2)结合(1)种树状图根据概率公式计算出两人获胜的概率,比较大小即可判断.
    【详解】
    (1)画树状图如下:

    由树状图可知共有20种等可能结果,其中一次性摸出一个黄球和一个白球的有11种结果,
    ∴一次性摸出一个黄球和一个白球的概率为;
    (2)不公平,
    由(1)种树状图可知,丽丽去的概率为,张强去的概率为=,
    ∵,
    ∴该游戏不公平.
    【点睛】
    本题考查了列表法与树状图法,解题的关键是根据题意画出树状图.
    20、(1)见解析;(2)正方形的边长为.
    【解析】
    (1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;
    (2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.
    【详解】
    (1)证明:∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=∠C=90°,
    ∴∠BAE+∠AEB=90°,
    ∵AE⊥BF,垂足为G,
    ∴∠CBF+∠AEB=90°,
    ∴∠BAE=∠CBF,
    在△ABE与△BCF中,

    ∴△ABE≌△BCF(ASA),
    ∴AE=BF;
    (2)解:∵四边形ABCD为正方形,
    ∴∠ABC=90°,
    ∵AE⊥BF,
    ∴∠BGE=∠ABE=90°,
    ∵∠BEG=∠AEB,
    ∴△BGE∽△ABE,
    ∴=,
    即:BE2=EG•AE,
    设EG=x,则AE=AG+EG=2+x,
    ∴()2=x•(2+x),
    解得:x1=1,x2=﹣3(不合题意舍去),
    ∴AE=3,
    ∴AB===.
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.
    21、 (1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.
    【解析】
    (1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;
    (2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;
    (1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.
    【详解】
    (1)当x=1时,y=ax2=1,
    解得:a=1;
    将(﹣1,7)、(0,2)代入y=x2+bx+c,得:
    ,解得:,
    ∴抛物线的表达式为y=x2﹣4x+2;
    (2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,
    ∴点A到抛物线的距离与点B到抛物线的距离比为2:1.
    ∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,
    ∴点B到抛物线的距离为1,
    ∴点B的横坐标为1+2=5,
    ∴点B的坐标为(5,7).
    (1)∠BAD和∠DCO互补,理由如下:
    当x=0时,y=x2﹣4x+2=2,
    ∴点A的坐标为(0,2),
    ∵y=x2﹣4x+2=(x﹣2)2﹣2,
    ∴点D的坐标为(2,﹣2).
    过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.
    设直线BD的表达式为y=mx+n(m≠0),
    将B(5,7)、D(2,﹣2)代入y=mx+n,
    ,解得:,
    ∴直线BD的表达式为y=1x﹣2.
    当y=2时,有1x﹣2=2,
    解得:x=,
    ∴点N的坐标为(,2).
    ∵A(0,2),B(5,7),D(2,﹣2),
    ∴AB=5,BD=1,BN=,
    ∴==.
    又∵∠ABD=∠NBA,
    ∴△ABD∽△NBA,
    ∴∠ANB=∠DAB.
    ∵∠ANB+∠AND=120°,
    ∴∠DAB+∠DCO=120°,
    ∴∠BAD和∠DCO互补.

    【点睛】
    本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.
    22、(1)见解析(2)
    【解析】
    (1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
    (2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.
    【详解】
    解:(1)连接OE,BE,
    ∵DE=EF,
    ∴=
    ∴∠OBE=∠DBE
    ∵OE=OB,
    ∴∠OEB=∠OBE
    ∴∠OEB=∠DBE,
    ∴OE∥BC
    ∵⊙O与边AC相切于点E,
    ∴OE⊥AC
    ∴BC⊥AC
    ∴∠C=90°
    (2)在△ABC,∠C=90°,BC=3,sinA=,
    ∴AB=5,
    设⊙O的半径为r,则AO=5﹣r,
    在Rt△AOE中,sinA=



    【点睛】
    本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
    23、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解:(I)解不等式(1),得x≥;
    (II)解不等式(1),得x≤1;
    (III)把不等式①和②的解集在数轴上表示出来:

    (IV)原不等式组的解集为:≤x≤1.
    故答案为x≥、x≤1、≤x≤1.
    【点睛】
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    24、 (1);
    (2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
    (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
    【解析】
    (1)根据销售额=销售量×销售价单x,列出函数关系式.
    (2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
    (3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
    【详解】
    解:(1)由题意得:,
    ∴w与x的函数关系式为:.
    (2),
    ∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
    答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
    (3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
    ∵3>28,∴x2=3不符合题意,应舍去.
    答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
    25、(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.
    【解析】
    (1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;
    (2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.
    【详解】
    (1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,
    故答案为(20+2x),(40-x);
    (2)、根据题意可得:(20+2x)(40-x)=1200,
    解得:
    即每件童装降价10元或20元时,平均每天盈利1200元;
    (3)、(20+2x)(40-x)=2000, ,
    ∵此方程无解,
    ∴不可能盈利2000元.
    【点睛】
    本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.
    26、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.
    【解析】
    (1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;
    用待定系数法求出一次函数解析式,再代入进行运算即可.
    【详解】
    (1)汽车行驶400千米,剩余油量30升,

    即加满油时,油量为70升.
    (2)设,把点,坐标分别代入得,,
    ∴,当时,,即已行驶的路程为650千米.
    【点睛】
    本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.
    27、(1);(2);(3)
    【解析】
    (1)把A(-1,0)代入y=x2-bx+c,即可得到结论;
    (2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;
    (3)连接QM,DM,根据平行线的判定得到QN∥MH,根据平行线的性质得到∠NMH=∠QNM,根据已知条件得到∠QMN=∠MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH推出∠NMD=90°;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论.
    【详解】
    (1)把A(﹣1,0)代入,
    ∴,
    ∴;
    (2)由(1)得,,
    ∵点D为抛物线顶点,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    将代入得,,
    解得:,(舍去),
    ∴二次函数解析式为:;
    (3)连接QM,DM,

    ∵,,
    ∴,∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,设,则,
    ∴,同理,
    设,则,∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    ∵,
    ∴,,
    ∵,
    ∴,即,
    解得:,(舍去),
    ∴,
    ∵,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,,,
    过P作于T,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.

    相关试卷

    江苏省兴化市顾庄学区重点名校2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省兴化市顾庄学区重点名校2021-2022学年中考数学考前最后一卷含解析,共19页。

    广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了下列事件中,必然事件是,初三,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年江苏省无锡市崇安区重点名校中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年江苏省无锡市崇安区重点名校中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了八边形的内角和为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map