吉林省长春朝阳区六校联考2021-2022学年中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )
A.259×104 B.25.9×105 C.2.59×106 D.0.259×107
2.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )
A.﹣2.5 B.﹣0.6 C.+0.7 D.+5
3.如图所示的正方体的展开图是( )
A. B. C. D.
4.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )
A.27 B.51 C.69 D.72
5.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里 B.45海里 C.20海里 D.30海里
6.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是( )
A. B.
C. D.
7.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )
A.3 B.4 C. D.5
8.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=( )
A.50° B.40° C.30° D.20°
9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )
A.103块 B.104块 C.105块 D.106块
10.下列运算错误的是( )
A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=﹣1,则m的值是____.
12.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.
13.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.
14.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.
15.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
16.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.
三、解答题(共8题,共72分)
17.(8分)如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.
(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.
18.(8分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
求证:①PN=PF;②DF+DN=DP;
(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.
19.(8分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.
20.(8分)先化简:,再请你选择一个合适的数作为x的值代入求值.
21.(8分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
(1)求点P的坐标;
(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。
22.(10分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
(1)求证:△ACM∽△ABE.
(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.
23.(12分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.
24.如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
(1)求该二次函数的表达式;
(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;
(3)在(2)的条件下,请解答下列问题:
①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;
②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.
【详解】
n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.
【点睛】
本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.
2、B
【解析】
求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
【详解】
解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,
∵5>3.5>2.5>0.7>0.6,
∴最接近标准的篮球的质量是-0.6,
故选B.
【点睛】
本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
3、A
【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
【详解】
把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
故选A
【点睛】
本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
4、D
【解析】
设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.
解:设第一个数为x,则第二个数为x+7,第三个数为x+1
故三个数的和为x+x+7+x+1=3x+21
当x=16时,3x+21=69;
当x=10时,3x+21=51;
当x=2时,3x+21=2.
故任意圈出一竖列上相邻的三个数的和不可能是3.
故选D.
“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
5、D
【解析】
根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
【详解】
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
故选:D.
【点睛】
此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
6、B
【解析】
根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.
【详解】
设乙每天完成x个零件,则甲每天完成(x+8)个.
即得, ,故选B.
【点睛】
找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.
7、B
【解析】
连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.
【详解】
连接DF,
∵四边形ABCD是矩形
∴
在中,
故选:B.
【点睛】
本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.
8、B
【解析】
试题解析:延长ED交BC于F,
∵AB∥DE,
∴
在△CDF中,
故
故选B.
9、C
【解析】
试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,
550×60+(x﹣60)×500>55000 解得,x>104 ∴这批电话手表至少有105块
考点:一元一次不等式的应用
10、D
【解析】
【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
【详解】A、(m2)3=m6,正确;
B、a10÷a9=a,正确;
C、x3•x5=x8,正确;
D、a4+a3=a4+a3,错误,
故选D.
【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3.
【解析】
可以先由韦达定理得出两个关于、的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.
【详解】
得+=-2m-3,=m2,又因为,所以m2-2m-3=0,得m=3或m=-1,因为一元二次方程的两个不相等的实数根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,综上m=3.
【点睛】
本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.
12、1.
【解析】
∵∠AOB=∠COD,
∴S阴影=S△AOB.
∵四边形ABCD是平行四边形,
∴OA=AC=×1=2.
∵AB⊥AC,
∴S阴影=S△AOB=OA•AB=×2×1=1.
【点睛】
本题考查了扇形面积的计算.
13、1
【解析】
根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.
【详解】
△=(﹣8)2﹣4m=0,
解得m=1,
故答案为:1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
14、1或
【解析】
由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.
【详解】
解:∵四边形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四边形ABFE是平行四边形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
当△EFG为等腰三角形时,
当EF=EG时,EG=,
如图1,
过点D作DH⊥EG于H,
∴EH=EG=,
在Rt△DEH中,DE==1,
GE=GF时,如图2,
过点G作GQ⊥EF,
∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
∴EG=1,
过点D作DP⊥EG于P,
∴PE=EG=,
同①的方法得,DE=,
当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
故答案为1或.
【点睛】
本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.
15、0
【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.
【详解】把点(12,﹣5)代入直线y=kx得,
﹣5=12k,
∴k=﹣;
由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),
设直线l与x轴、y轴分别交于点A、B,(如图所示)
当x=0时,y=m;当y=0时,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=,
过点O作OD⊥AB于D,
∵S△ABO=OD•AB=OA•OB,
∴OD•=×m×m,
∵m>0,解得OD=m,
由直线与圆的位置关系可知m <6,解得m<,
故答案为0
【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.
16、1
【解析】
利用△ACD∽△CBD,对应线段成比例就可以求出.
【详解】
∵CD⊥AB,∠ACB=90°,
∴△ACD∽△CBD,
∴,
∴,
∴CD=1.
【点睛】
本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.
三、解答题(共8题,共72分)
17、(1)见解析;(2)2
【解析】
试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;
(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.
(1)连接OB.
∵OA=OB,∴∠OBA=∠BAC=30°.
∴∠AOB=80°-30°-30°=20°.
∵PA切⊙O于点A,∴OA⊥PA,
∴∠OAP=90°.
∵四边形的内角和为360°,
∴∠OBP=360°-90°-60°-20°=90°.
∴OB⊥PB.
又∵点B是⊙O上的一点,
∴PB是⊙O的切线.
(2)连接OP,
∵PA、PB是⊙O的切线,
∴PA=PB,∠OPA=∠OPB=,∠APB=30°.
在Rt△OAP中,∠OAP=90°,∠OPA=30°,
∴OP=2OA=2×2=1.
∴PA=OP2-OA2=2
∵PA=PB,∠APB=60°,
∴PA=PB=AB=2.
考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质
点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
18、(1)①证明见解析;②证明见解析;(2),证明见解析.
【解析】
(1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;
②由勾股定理可求得DM=DP,利用①可求得MN=DF,则可证得结论;
(2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.
【详解】
解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.
又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
∵PM⊥PD,∠DMP=45°,
∴DP=MP.
∵PM⊥PD,PF⊥PN,
∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
在△PMN和△PDF中, ,
∴△PMN≌△PDF(ASA),
∴PN=PF,MN=DF;
②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
(2).理由如下:
过点P作PM1⊥PD,PM1交AD边于点M1,如图,
∵四边形ABCD是矩形,∴∠ADC=90°.
又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,
∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.
在△PM1N和△PDF中,
∴△PM1N≌△PDF(ASA),∴M1N=DF,
由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,
∴DN﹣DF=DP.
【点睛】
本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.
19、(1)证明见解析;(2);拓展:
【解析】
(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
拓展:对△ABD的外心位置进行推理,即可得出结论.
【详解】
(1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
∴BD=CE,
∴BC-BD=BC-CE,即BE=CD,
∵∠B=∠C=40°,
∴AB=AC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS);
(2)解:∵∠B=∠C=40°,AB=BE,
∴∠BEA=∠EAB=(180°-40°)=70°,
∵BE=CD,AB=AC,
∴AC=CD,
∴∠ADC=∠DAC=(180°-40°)=70°,
∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
拓展:
解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
∴∠BAD=140°-∠BDA<90°.
∴∠BDA>50°,
又∵∠BDA<90°,
∴50°<∠BDA<90°.
【点睛】
本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.
20、x﹣1,1.
【解析】
先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可.
【详解】
解:原式==x﹣1,
根据分式的意义可知,x≠0,且x≠±1,
当x=2时,原式=2﹣1=1.
【点睛】
本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零.
21、(1); (2);(3)
【解析】
(1)联立两直线解析式,求出交点P坐标即可;
(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
(3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
【详解】
解:(1)联立得:,解得:;
∴P的坐标为;
(2)分两种情况考虑:
当时,由F坐标为(a,0),得到OF=a,
把E横坐标为a,代入得:即
此时
当时,重合的面积就是梯形面积,
F点的横坐标为a,所以E点纵坐标为
M点横坐标为:-3a+12,
∴
所以;
(3)令中的y=0,解得:x=4,则A的坐标为(4,0)
则AP= ,则PM=2
又∵OP=
∴点P向左平移3个单位在向下平移可以得到M1
点P向右平移3个单位在向上平移可以得到M2
∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
A向右平移3个单位在向上平移可以得到 Q1(7,)
所以,存在Q点,且坐标是
【点睛】
本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
22、(1)证明见解析;(2)证明见解析;(3)74.
【解析】
(1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
(2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
【详解】
(1)证明:∵四边形ABCD和四边形AEMN都是正方形,
∴,∠CAB=∠MAC=45°,
∴∠CAB-∠CAE=∠MAC-∠CAE,
∴∠BAE=∠CAM,
∴△ACM∽△ABE.
(2)证明:连结AC
因为△ACM∽△ABE,则∠ACM=∠B=90°,
因为∠ACB=∠ECF=45°,
所以∠ACM+∠ACB+∠ECF=180°,
所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
所以BD平行MF,
又因为MC=BE,FC=CE,
所以MF=BC=BD,
所以四边形BFMD是平行四边形
(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
=62+42+(2+6)4+ 26
=74.
【点睛】
本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
23、证明见解析.
【解析】
不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.
【详解】
∵AB是⊙O直径,
∴AD⊥BC,
又BD=CD,
∴AB=AC,
∴∠B=∠C,
又∠ADB=∠DEC=90°,
∴△BDA∽△CED.
【点睛】
本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.
24、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);当t=时,S△MDN的最大值为.
【解析】
(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;
(2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于AD∥BC,设直线AD的解析式为y=-x+b,即可得到结论;
(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要当或时,△PBC∽△ABD,解方程组得D(4,−5),求得
设P的坐标为(x,0),代入比例式解得或x=−4.5,即可得到或P(−4.5,0);
②过点B作BF⊥AD于F,过点N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF 求得求得 由于于是得到即可得到结果.
【详解】
(1)由题意知:
解得
∴二次函数的表达式为
(2)在 中,令y=0,则
解得:
∴B(3,0),
由已知条件得直线BC的解析式为y=−x+3,
∵AD∥BC,
∴设直线AD的解析式为y=−x+b,
∴0=1+b,
∴b=−1,
∴直线AD的解析式为y=−x−1;
(3)①∵BC∥AD,
∴∠DAB=∠CBA,
∴只要当:或时,△PBC∽△ABD,
解得D(4,−5),
∴
设P的坐标为(x,0),
即或
解得或x=−4.5,
∴或P(−4.5,0),
②过点B作BF⊥AD于F,过点N作NE⊥AD于E,
在Rt△AFB中,
∴sin∠BAF
∴
∴
∵
又∵
∴
∴当时,的最大值为
【点睛】
属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.
吉林省长春市新区重点名校2021-2022学年中考数学全真模拟试题含解析: 这是一份吉林省长春市新区重点名校2021-2022学年中考数学全真模拟试题含解析,共17页。试卷主要包含了答题时请按要求用笔,如图,右侧立体图形的俯视图是,下列命题中真命题是,已知抛物线y=ax2﹣等内容,欢迎下载使用。
吉林省长春市朝阳区新朝阳实验校2021-2022学年中考数学模试卷含解析: 这是一份吉林省长春市朝阳区新朝阳实验校2021-2022学年中考数学模试卷含解析,共24页。
吉林省长春市朝阳区新朝阳实验校2021-2022学年中考数学仿真试卷含解析: 这是一份吉林省长春市朝阳区新朝阳实验校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值为等内容,欢迎下载使用。