贵州省兴仁县达标名校2022年中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )
A.62° B.56° C.60° D.28°
2.tan60°的值是( )
A. B. C. D.
3.一、单选题
如图: 在中,平分,平分,且交于,若,则等于( )
A.75 B.100 C.120 D.125
4.﹣的绝对值是( )
A.﹣ B.﹣ C. D.
5.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A.30 B.40 C.60 D.80
6.下列计算结果是x5的为( )
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
7.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是
A.① B.④ C.②或④ D.①或③
8.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )
A.0.5 B.1 C.3 D.π
9.如图,是的直径,是的弦,连接,,,则与的数量关系为( )
A. B.
C. D.
10.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是( )
A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.
12.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC的外部,则阴影部分图形的周长为_____cm.
13.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.
14.若a2﹣2a﹣4=0,则5+4a﹣2a2=_____.
15.与直线平行的直线可以是__________(写出一个即可).
16.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.
三、解答题(共8题,共72分)
17.(8分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.
证明:S矩形ABCD=S1+S2+S3=2,S4= ,S5= ,S6= + ,S阴影=S1+S6=S1+S2+S3= .
18.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.
19.(8分)已知:a是﹣2的相反数,b是﹣2的倒数,则
(1)a=_____,b=_____;
(2)求代数式a2b+ab的值.
20.(8分)已知抛物线的开口向上顶点为P
(1)若P点坐标为(4,一1),求抛物线的解析式;
(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
21.(8分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=6,求DE的长.
22.(10分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB:
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长
23.(12分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.
24.我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
(1)选中的男主持人为甲班的频率是
(2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
连接OB.
在△OAB中,OA=OB(⊙O的半径),
∴∠OAB=∠OBA(等边对等角);
又∵∠OAB=28°,
∴∠OBA=28°;
∴∠AOB=180°-2×28°=124°;
而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠C=62°;
故选A
2、A
【解析】
根据特殊角三角函数值,可得答案.
【详解】
tan60°=
故选:A.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
3、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
【详解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.
【点睛】
本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
4、C
【解析】
根据负数的绝对值是它的相反数,可得答案.
【详解】
│-│=,A错误;
│-│=,B错误;││=,D错误;
││=,故选C.
【点睛】
本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.
5、B
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM==a,
∴点A的坐标为(a,a).
∵点A在反比例函数y=的图象上,
∴a•a=a2=48,
解得:a=1,或a=-1(舍去).
∴AM=8,OM=6,OB=OA=1.
∵四边形OACB是菱形,点F在边BC上,
∴S△AOF=S菱形OBCA=OB•AM=2.
故选B.
【点睛】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
6、C
【解析】解:A.x10÷x2=x8,不符合题意;
B.x6﹣x不能进一步计算,不符合题意;
C.x2x3=x5,符合题意;
D.(x3)2=x6,不符合题意.
故选C.
7、D
【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
【详解】
解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
故选D.
8、C
【解析】
连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.
【详解】
连接OC、OD,
∵六边形ABCDEF是正六边形,
∴∠COD=60°,又OC=OD,
∴△COD是等边三角形,
∴OC=CD,
正六边形的周长:圆的直径=6CD:2CD=3,
故选:C.
【点睛】
本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.
9、C
【解析】
首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.
【详解】
解:∵是的直径,
∴∠ADB=90°.
∴∠DAB+∠B=90°.
∵∠B=∠C,
∴∠DAB+∠C=90°.
故选C.
【点睛】
本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.
10、D
【解析】
由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;
【详解】
A正确;理由:
在△ABD和△ACD中,
∵∠1=∠2,AD=AD,∠ADB=∠ADC,
∴△ABD≌△ACD(ASA);
B正确;理由:
在△ABD和△ACD中,
∵∠1=∠2,∠B=∠C,AD=AD
∴△ABD≌△ACD(AAS);
C正确;理由:
在△ABD和△ACD中,
∵AB=AC,∠1=∠2,AD=AD,
∴△ABD≌△ACD(SAS);
D不正确,由这些条件不能判定三角形全等;
故选:D.
【点睛】
本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4x=5(x-4)
【解析】
按照面积作为等量关系列方程有4x=5(x﹣4).
12、3
【解析】
由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.
【详解】
∵△A'DE与△ADE关于直线DE对称,
∴AD=A'D,AE=A'E,
C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.
故答案为3.
【点睛】
由图形轴对称可以得到对应的边相等、角相等.
13、(16,) (8068,)
【解析】
利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解】
∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(2)个三角形的直角顶点的坐标是(4,);
∵5÷3=1余2,
∴第(5)个三角形的直角顶点的坐标是(16,),
∵2018÷3=672余2,
∴第(2018)个三角形是第672组的第二个直角三角形,
其直角顶点与第672组的第二个直角三角形顶点重合,
∴第(2018)个三角形的直角顶点的坐标是(8068,).
故答案为:(16,);(8068,)
【点睛】
本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.
14、-3
【解析】
试题解析:∵ 即
∴原式
故答案为
15、y=-2x+5(答案不唯一)
【解析】
根据两条直线平行的条件:k相等,b不相等解答即可.
【详解】
解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).
故答案为y=2x+1.(提示:满足的形式,且)
【点睛】
本题考查了两条直线相交或平行问题.直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条直线重合.
16、
【解析】
由图象得出解析式后联立方程组解答即可.
【详解】
由图象可得:y甲=4t(0≤t≤5);y乙=;
由方程组,解得t=.
故答案为.
【点睛】
此题考查一次函数的应用,关键是由图象得出解析式解答.
三、解答题(共8题,共72分)
17、S1,S3,S4,S5,1
【解析】
利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.
【详解】
由题意:S矩形ABCD=S1+S1+S3=1,
S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.
故答案为S1,S3,S4,S5,1.
【点睛】
考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.
18、(1);(2).
【解析】
试题分析:(1)根据概率公式可得;
(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.
解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,
∴抽到数字“﹣1”的概率为;
(2)画树状图如下:
由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,
∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.
19、2 ﹣
【解析】
试题分析:利用相反数和倒数的定义即可得出.
先因式分解,再代入求出即可.
试题解析:是的相反数,是的倒数,
当时,
点睛:只有符号不同的两个数互为相反数.
乘积为的两个数互为倒数.
20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
【解析】
(1)将P(4,-1)代入,可求出解析式
(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
(3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
【详解】
解:(1)由此抛物线顶点为P(4,-1),
所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
所以抛物线解析式为:;
(2)由此抛物线经过点C(4,-1),
所以 一1=16a+4b+3,即b=-4a-1.
因为抛物线的开口向上,则有
其对称轴为直线,而
所以当-1≤x≤2时,y随着x的增大而减小
当x=-1时,y=a+(4a+1)+3=4+5a
当x=2时,y=4a-2(4a+1)+3=1-4a
所以当-1≤x≤2时,1-4a≤y≤4+5a;
(3)当a=1时,抛物线的解析式为y=x2+bx+3
∴抛物线的对称轴为直线
由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
分别代入可得,当x=0时,y=3
当x=1时,y=b+4
当x=-时,y=-+3
①当一<0,即b>0时,3≤y≤b+4,
由b+4=6解得b=2
②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
由b+4=6解得b=2(舍去);
③当 ,即b<-2时,b+4≤y≤3,
由b+4=-6解得b=-10
综上,b=2或-10
【点睛】
本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
21、(1)证明见解析;(2).
【解析】
(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;
(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.
【详解】
(1)证明:∵BD是△ABC的角平分线,
∴∠ABD=∠DBE,
∵DE∥AB,
∴∠ABD=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE;
∵BE=AF,
∴AF=DE;
∴四边形ADEF是平行四边形;
(2)解:过点E作EH⊥BD于点H.
∵∠ABC=60°,BD是∠ABC的平分线,
∴∠ABD=∠EBD=30°,
∴DH=BD=×6=3,
∵BE=DE,
∴BH=DH=3,
∴BE==,
∴DE=BE=.
【点睛】
此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.
22、(1)见解析;(2)2 (3)1
【解析】
(1)通过证明∠BED=∠DBE得到DB=DE;
(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
(3)证明△DBF∽△ADB,然后利用相似比求AD的长.
【详解】
(1)证明:∵AD平分∠BAC,BE平分∠ABD,
∴∠1=∠2,∠3=∠4,
∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
∴DB=DE;
(2)解:连接CD,如图,
∵∠BAC=10°,
∴BC为直径,
∴∠BDC=10°,
∵∠1=∠2,
∴DB=BC,
∴△DBC为等腰直角三角形,
∴BC=BD=4,
∴△ABC外接圆的半径为2;
(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
∴△DBF∽△ADB,
∴=,即=,
∴AD=1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
23、(1);(2)P在第二象限,Q在第三象限.
【解析】
试题分析:(1)求出点B坐标即可解决问题;
(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24、 (1) (2) ,图形见解析.
【解析】
(1)根据概率的定义即可求出;
(2)先根据题意列出树状图,再利用概率公式进行求解.
【详解】
(1)由题意P(选中的男主持人为甲班)=
(2)列出树状图如下
∴P(选中的男女主持人均为甲班的)=
【点睛】
此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
贵州省黔南州长顺县达标名校2021-2022学年中考数学全真模拟试卷含解析: 这是一份贵州省黔南州长顺县达标名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,在2和3之间的是等内容,欢迎下载使用。
2022年浙江省绍兴县重点达标名校中考数学全真模拟试卷含解析: 这是一份2022年浙江省绍兴县重点达标名校中考数学全真模拟试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,四组数中,一、单选题,化简的结果是等内容,欢迎下载使用。
2022届重庆市北碚区重点达标名校中考数学全真模拟试卷含解析: 这是一份2022届重庆市北碚区重点达标名校中考数学全真模拟试卷含解析,共19页。试卷主要包含了计算tan30°的值等于等内容,欢迎下载使用。