搜索
    上传资料 赚现金
    英语朗读宝

    2022年贵州省平塘县中考数学全真模拟试题含解析

    2022年贵州省平塘县中考数学全真模拟试题含解析第1页
    2022年贵州省平塘县中考数学全真模拟试题含解析第2页
    2022年贵州省平塘县中考数学全真模拟试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年贵州省平塘县中考数学全真模拟试题含解析

    展开

    这是一份2022年贵州省平塘县中考数学全真模拟试题含解析,共23页。试卷主要包含了二次函数y=﹣,2016的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是(  )

    A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
    C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
    2.若分式的值为零,则x的值是( )
    A.1 B. C. D.2
    3.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为(  )
    A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
    4.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为  
    A. B. C. D.
    5.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是(  )

    A.10° B.20° C.50° D.70°
    6.二次函数y=﹣(x+2)2﹣1的图象的对称轴是(  )
    A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣2
    7.如图所示的几何体的主视图正确的是( )

    A. B. C. D.
    8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是(  )

    A.① B.② C.③ D.④
    9.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为(  )

    A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定
    10.2016的相反数是( )
    A. B. C. D.
    11.若分式在实数范围内有意义,则实数的取值范围是( )
    A. B. C. D.
    12.如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为(   )

    A.2cm2   B.3cm2   C.4cm2   D.5cm2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.

    14.观察以下一列数:3,,,,,…则第20个数是_____.
    15.如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.

    16.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).

    17.在中,::1:2:3,于点D,若,则______
    18.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣ |+4sin60°;
    20.(6分)先化简,再求值:(﹣2)÷,其中x满足x2﹣x﹣4=0
    21.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.

    22.(8分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根.
    (1)求k的取值范围;
    (2)若x1,x2是这个方程的两个实数根,求的值;
    (3)根据(2)的结果你能得出什么结论?
    23.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
    (1)求证:△ABE∽△ECM;
    (2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
    (3)当线段AM最短时,求重叠部分的面积.

    24.(10分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.
    25.(10分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:
    天数(x)
    1
    3
    6
    10
    每件成本p(元)
    7.5
    8.5
    10
    12
    任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,
    设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?
    26.(12分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.
    (1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.
    ①求证:△ABP∽△BCP;
    ②若 PA=3,PC=4,则 PB= .
    (2)已知锐角△ABC,分别以 AB、AC 为边向外作正△ABE 和正△ACD,CE 和 BD相交于 P 点.如图(2)
    ①求∠CPD 的度数;
    ②求证:P 点为△ABC 的费马点.

    27.(12分)解不等式 ,并把它的解集表示在数轴上.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    试题解析:A、∵4+10+8+6+2=30(人),
    ∴参加本次植树活动共有30人,结论A正确;
    B、∵10>8>6>4>2,
    ∴每人植树量的众数是4棵,结论B正确;
    C、∵共有30个数,第15、16个数为5,
    ∴每人植树量的中位数是5棵,结论C正确;
    D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
    ∴每人植树量的平均数约是4.73棵,结论D不正确.
    故选D.
    考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
    2、A
    【解析】
    试题解析:∵分式的值为零,
    ∴|x|﹣1=0,x+1≠0,
    解得:x=1.
    故选A.
    3、C
    【解析】
    【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
    【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
    ∴k>0,
    A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;
    B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
    C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;
    D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,
    故选C.
    【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
    4、B
    【解析】
    将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.
    【详解】
    解:,
    ①②得:,即,
    将代入①得:,即,
    将,代入得:,
    解得:.
    故选:.
    【点睛】
    此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.
    5、B
    【解析】
    要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.
    【详解】
    解:∵要使木条a与b平行,
    ∴∠1=∠2,
    ∴当∠1需变为50 º,
    ∴木条a至少旋转:70º-50º=20º.
    故选B.
    【点睛】
    本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
    6、D
    【解析】
    根据二次函数顶点式的性质解答即可.
    【详解】
    ∵y=﹣(x+2)2﹣1是顶点式,
    ∴对称轴是:x=-2,
    故选D.
    【点睛】
    本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.
    7、D
    【解析】
    主视图是从前向后看,即可得图像.
    【详解】
    主视图是一个矩形和一个三角形构成.故选D.
    8、A
    【解析】
    由平面图形的折叠及正方体的表面展开图的特点解题.
    【详解】
    将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,
    故选A.
    【点睛】
    本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.
    9、A
    【解析】
    直接利用圆周角定理结合三角形的外角的性质即可得.
    【详解】
    连接BE,如图所示:

    ∵∠ACB=∠AEB,
    ∠AEB>∠D,
    ∴∠C>∠D.
    故选:A.
    【点睛】
    考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.
    10、C
    【解析】
    根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.
    故选C.
    11、D
    【解析】
    根据分式有意义的条件即可求出答案.
    【详解】
    解:由分式有意义的条件可知:,

    故选:.
    【点睛】
    本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
    12、C
    【解析】
    延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.
    【详解】
    延长AP交BC于E.
    ∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.
    在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCES△ABC=4cm1.
    故选C.

    【点睛】
    本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCES△ABC.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
    【详解】
    过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出= ,代入求出BF和CM,相加即可求出答案.
    过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
    ∵BF⊥OA,DE⊥OA,CM⊥OA,
    ∴BF∥DE∥CM.
    ∵OD=AD=3,DE⊥OA,
    ∴OE=EA= OA=2,
    由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,
    ∵BF∥DE∥CM,
    ∴△OBF∽△ODE,△ACM∽△ADE,
    ∴,
    ∵AM=PM= (OA-OP)= (4-2x)=2-x,
    即,
    解得:
    ∴BF+CM= .

    故答案为.
    【点睛】
    考核知识点:二次函数综合题.熟记性质,数形结合是关键.
    14、
    【解析】
    观察已知数列得到一般性规律,写出第20个数即可.
    【详解】
    解:观察数列得:第n个数为,则第20个数是.
    故答案为.
    【点睛】
    本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.
    15、16
    【解析】
    根据题意得S△BDE:S△OCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.
    【详解】
    解:设D(a,b)则A(a,0),B(a,2b)
    ∵S△BDE:S△OCE=1:9
    ∴BD:OC=1:3
    ∴C(0,3b)
    ∴△COE高是OA的,
    ∴S△OCE=3ba× =9
    解得ab=8
    k=a×2b=2ab=2×8=16
    故答案为16.
    【点睛】
    此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.
    16、
    【解析】
    考点:弧长的计算;正多边形和圆.
    分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.
    解:方法一:
    先求出正六边形的每一个内角==120°,
    所得到的三条弧的长度之和=3×=2πcm;
    方法二:先求出正六边形的每一个外角为60°,
    得正六边形的每一个内角120°,
    每条弧的度数为120°,
    三条弧可拼成一整圆,其三条弧的长度之和为2πcm.
    17、2.1
    【解析】
    先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
    【详解】
    解:根据题意,设∠A、∠B、∠C为k、2k、3k,
    则k+2k+3k=180°,
    解得k=30°,
    2k=60°,
    3k=90°,
    ∵AB=10,
    ∴BC=AB=1,
    ∵CD⊥AB,
    ∴∠BCD=∠A=30°,
    ∴BD=BC=2.1.
    故答案为2.1.
    【点睛】
    本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
    18、1
    【解析】
    先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
    【详解】
    解:∵BD=CD,
    ∴,
    ∴OD⊥BC,
    ∴BE=CE,
    而OA=OB,
    ∴OE为△ABC的中位线,
    ∴,
    ∴DE=OD-OE=5-3=1.
    故答案为1.

    【点睛】
    此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、1.
    【解析】
    分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    详解:原式=1+4-(2-2)+4×,
    =1+4-2+2+2,
    =1.
    点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
    20、1
    【解析】
    首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.
    【详解】
    解:(﹣2)÷
    =
    =x2﹣3﹣2x+2
    =x2﹣2x﹣1,
    ∵x2﹣x﹣4=0,
    ∴x2﹣2x=8,
    ∴原式=8﹣1=1.
    【点睛】
    分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.
    21、(1)10;(2).
    【解析】
    (1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;
    (2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF的长度不变
    【详解】
    (1)如图1,∵四边形ABCD是矩形,

    ∴∠C=∠D=90°,
    ∴∠1+∠3=90°,
    ∵由折叠可得∠APO=∠B=90°,
    ∴∠1+∠2=90°,∴∠2=∠3,
    又∵∠D=∠C,
    ∴△OCP∽△PDA;
    ∵△OCP与△PDA的面积比为1:4,
    ∴ ,∴ CP=AD=4
    设OP=x,则CO=8﹣x,
    在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,
    解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;
    (2)作MQ∥AN,交PB于点Q,如图2,

    ∵AP=AB,MQ∥AN,
    ∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,
    ∴BN=QM.
    ∵MP=MQ,ME⊥PQ,
    ∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,
    ∴△MFQ≌△NFB.
    ∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,
    由(1)中的结论可得:PC=4,BC=8,∠C=90°,
    ∴PB=,∴EF=PB=2,
    ∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形
    22、(1)k>-1;(2)2;(3)k>-1时,的值与k无关.
    【解析】
    (1)由题意得该方程的根的判别式大于零,列出不等式解答即可.
    (2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.
    (3)结合(1)和(2)结论可见,k>-1时,的值为定值2,与k无关.
    【详解】
    (1)∵方程有两个不等实根,
    ∴△>0,
    即4+4k>0,∴k>-1
    (2)由根与系数关系可知
    x1+x2=-2 ,x1x2=-k,



    (3)由(1)可知,k>-1时,
    的值与k无关.
    【点睛】
    本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.
    23、(1)证明见解析;(2)能;BE=1或;(3)
    【解析】
    (1)证明:∵AB=AC,
    ∴∠B=∠C,
    ∵△ABC≌△DEF,
    ∴∠AEF=∠B,
    又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
    ∴∠CEM=∠BAE,
    ∴△ABE∽△ECM;
    (2)能.
    ∵∠AEF=∠B=∠C,且∠AME>∠C,
    ∴∠AME>∠AEF,
    ∴AE≠AM;
    当AE=EM时,则△ABE≌△ECM,
    ∴CE=AB=5,
    ∴BE=BC−EC=6−5=1,
    当AM=EM时,则∠MAE=∠MEA,
    ∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,
    又∵∠C=∠C,
    ∴△CAE∽△CBA,
    ∴,
    ∴CE=,
    ∴BE=6−=;
    ∴BE=1或;
    (3)解:设BE=x,
    又∵△ABE∽△ECM,
    ∴,即:,
    ∴CM=,
    ∴AM=5−CM,
    ∴当x=3时,AM最短为,
    又∵当BE=x=3=BC时,
    ∴点E为BC的中点,
    ∴AE⊥BC,
    ∴AE=,
    此时,EF⊥AC,
    ∴EM=,
    S△AEM=.
    24、 (1) 现在平均每天生产1台机器.(2) 现在比原计划提前5天完成.
    【解析】
    (1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;
    (2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.
    【详解】
    解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台.
    依题意得:,
    解得:x=1.
    检验x=1是原分式方程的解.
    (2)由题意得=20-15=5(天)
    ∴现在比原计划提前5天完成.
    【点睛】
    此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
    25、(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.
    【解析】
    (1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.
    【详解】
    (1)设p与x之间的函数关系式为p=kx+b,则有
    ,解得,,
    即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),
    当1≤x<10时,
    W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,
    当10≤x≤15时,
    W=[20﹣(0.5x+7)]×40=﹣20x+520,
    即W=;
    (2)当1≤x<10时,
    W=﹣x2+16x+260=﹣(x﹣8)2+324,
    ∴当x=8时,W取得最大值,此时W=324,
    当10≤x≤15时,
    W=﹣20x+520,
    ∴当x=10时,W取得最大值,此时W=320,
    ∵324>320,
    ∴李师傅第8天创造的利润最大,最大利润是324元;
    (3)当1≤x<10时,
    令﹣x2+16x+260=299,得x1=3,x2=13,
    当W>299时,3<x<13,
    ∵1≤x<10,
    ∴3<x<10,
    当10≤x≤15时,
    令W=﹣20x+520>299,得x<11.05,
    ∴10≤x≤11,
    由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),
    即李师傅共可获得160元奖金.
    【点睛】
    本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.
    26、(1)①证明见解析;②;(2)①60°;②证明见解析;
    【解析】
    试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;
    ②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;
    (2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;
    ②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.
    试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
    ∴∠PAB=∠PBC,
    又∵∠APB=∠BPC=120°,
    ∴△ABP∽△BCP,
    ②解:∵△ABP∽△BCP,
    ∴,
    ∴PB2=PA•PC=12,
    ∴PB=2;
    (2)解:①∵△ABE与△ACD都为等边三角形,
    ∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
    ∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
    在△ACE和△ABD中,

    ∴△ACE≌△ABD(SAS),
    ∴∠1=∠2,
    ∵∠3=∠4,
    ∴∠CPD=∠6=∠5=60°;
    ②证明:∵△ADF∽△CFP,
    ∴AF•PF=DF•CF,
    ∵∠AFP=∠CFD,
    ∴△AFP∽△CDF.
    ∴∠APF=∠ACD=60°,
    ∴∠APC=∠CPD+∠APF=120°,
    ∴∠BPC=120°,
    ∴∠APB=360°﹣∠BPC﹣∠APC=120°,
    ∴P点为△ABC的费马点.

    考点:相似形综合题
    27、x<5;数轴见解析
    【解析】
    【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.
    【详解】移项,得 ,
    去分母,得 ,
    移项,得,
    ∴不等式的解集为,
    在数轴上表示如图所示:

    【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.

    相关试卷

    贵州省安顺黄腊初级中学2021-2022学年中考数学全真模拟试题含解析:

    这是一份贵州省安顺黄腊初级中学2021-2022学年中考数学全真模拟试题含解析,共21页。试卷主要包含了解分式方程时,去分母后变形为,下列计算正确的是,下列运算正确的是,已知点P等内容,欢迎下载使用。

    贵州省从江县2021-2022学年中考数学全真模拟试题含解析:

    这是一份贵州省从江县2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,要使式子有意义,x的取值范围是,下列运算正确的是等内容,欢迎下载使用。

    贵州省罗甸县联考2022年中考数学全真模拟试题含解析:

    这是一份贵州省罗甸县联考2022年中考数学全真模拟试题含解析,共19页。试卷主要包含了﹣2018的相反数是,下列运算中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map