湖北省咸宁市2021-2022学年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列计算正确的是( )
A.﹣= B. =±2
C.a6÷a2=a3 D.(﹣a2)3=﹣a6
2.的倒数是( )
A. B.3 C. D.
3.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )
A.4 B.4.5 C.5 D.5.5
4.将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )
A. B. C. D.
5.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是( )
A.55° B.60° C.65° D.70°
6.已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是( )
A.取时的函数值小于0
B.取时的函数值大于0
C.取时的函数值等于0
D.取时函数值与0的大小关系不确定
7.的相反数是( )
A. B.2 C. D.
8.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于
A.90° B.180° C.210° D.270°
9.下列计算正确的是
A. B. C. D.
10.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )
A.100° B.110° C.115° D.120°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在中,AB为直径,点C在上,的平分线交于D,则______
12.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
13.如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是_____平方米.
14.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.
15.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为_____.
16.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.
17.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.
三、解答题(共7小题,满分69分)
18.(10分)《九章算术》中有这样一道题,原文如下:
今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?
请解答上述问题.
19.(5分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
20.(8分)如图,已知,.求证.
21.(10分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.
(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)
22.(10分)观察下列等式:
①1×5+4=32;
②2×6+4=42;
③3×7+4=52;
…
(1)按照上面的规律,写出第⑥个等式:_____;
(2)模仿上面的方法,写出下面等式的左边:_____=502;
(3)按照上面的规律,写出第n个等式,并证明其成立.
23.(12分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.
24.(14分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.
如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.
(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;
(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.
【详解】
A. 不是同类二次根式,不能合并,故A选项错误;
B.=2≠±2,故B选项错误;
C. a6÷a2=a4≠a3,故C选项错误;
D. (−a2)3=−a6,故D选项正确.
故选D.
【点睛】
本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.
2、A
【解析】
解:的倒数是.
故选A.
【点睛】
本题考查倒数,掌握概念正确计算是解题关键.
3、B
【解析】
试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.
故选B
考点:平行线分线段成比例
4、C
【解析】
先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.
【详解】
∵点D为斜边AB的中点,
∴CD=AD=DB,
∴∠ACD=∠A=30°,∠BCD=∠B=60°,
∵∠EDF=90°,
∴∠CPD=60°,
∴∠MPD=∠NCD,
∵△EDF绕点D顺时针方向旋转α(0°<α<60°),
∴∠PDM=∠CDN=α,
∴△PDM∽△CDN,
∴=,
在Rt△PCD中,∵tan∠PCD=tan30°=,
∴=tan30°=.
故选:C.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.
5、C
【解析】
连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.
6、B
【解析】
画出函数图象,利用图象法解决问题即可;
【详解】
由题意,函数的图象为:
∵抛物线的对称轴x=,设抛物线与x轴交于点A、B,
∴AB<1,
∵x取m时,其相应的函数值小于0,
∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,
故选B.
【点睛】
本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.
7、D
【解析】
因为-+=0,所以-的相反数是.
故选D.
8、B
【解析】
试题分析:如图,如图,过点E作EF∥AB,
∵AB∥CD,∴EF∥AB∥CD,
∴∠1=∠4,∠3=∠5,
∴∠1+∠2+∠3=∠2+∠4+∠5=180°,
故选B
9、C
【解析】
根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.
【详解】
、与不是同类项,不能合并,此选项错误;
、,此选项错误;
、,此选项正确;
、,此选项错误.
故选:.
【点睛】
此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.
10、B
【解析】
连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.
【详解】
如下图,连接AD,BD,
∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,
∵AB为直径,∴∠ADB=90°,
∴∠BAD=90°-20°=70°,
∴∠BCD=180°-70°=110°.
故选B
【点睛】
本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
由AB为直径,得到,由因为CD平分,所以,这样就可求出.
【详解】
解:为直径,
,
又平分,
,
.
故答案为1.
【点睛】
本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度.
12、(-2,-2)
【解析】
先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
【详解】
“卒”的坐标为(﹣2,﹣2),
故答案是:(﹣2,﹣2).
【点睛】
考查了坐标确定位置,关键是正确确定原点位置.
13、
【解析】
试题分析:根据题意可知小羊的最大活动区域为:半径为5,圆心角度数为90°的扇形和半径为1,圆心角为60°的扇形,则.
点睛:本题主要考查的就是扇形的面积计算公式,属于简单题型.本题要特别注意的就是在拐角的位置时所构成的扇形的圆心角度数和半径,能够画出图形是解决这个问题的关键.在求扇形的面积时,我们一定要将圆心角代入进行计算,如果题目中出现的是圆周角,则我们需要求出圆心角的度数,然后再进行计算.
14、5750
【解析】
根据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn=20n﹣250,最后设生产甲乙产品的实际成本为W元,即可解答
【详解】
∵甲产品每袋售价72元,则利润率为20%.
设甲产品的成本价格为b元,
∴ =20%,
∴b=60,
∴甲产品的成本价格60元,
∴1.5kgA原料与1.5kgB原料的成本和60元,
∴A原料与B原料的成本和40元,
设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,
根据题意得:
,
∴xn=20n﹣250,
设生产甲乙产品的实际成本为W元,则有
W=60m+40n+xn,
∴W=60m+40n+20n﹣250=60(m+n)﹣250,
∵m+n≤100,
∴W≤6250;
∴生产甲乙产品的实际成本最多为5750元,
故答案为5750;
【点睛】
此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格
15、1
【解析】
解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案为1.
点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.
16、
【解析】
【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.
【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,
由题意得:x+(2x+1.82)=50,
故答案为x+(2x+1.82)=50.
【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.
17、
【解析】
【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.
【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:
.
故答案为
【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.
三、解答题(共7小题,满分69分)
18、甲有钱,乙有钱.
【解析】
设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.
【详解】
解:设甲有钱,乙有钱.
由题意得: ,
解方程组得: ,
答:甲有钱,乙有钱.
【点睛】
本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.
19、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;
(3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.
【解析】
(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.
【详解】
(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,
由题意得,,
∴m=1200,
经检验,m=1200是原分式方程的解,也符合题意,
∴m+300=1500元,
答:每台空调的进价为1200元,每台电冰箱的进价为1500元;
(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,
∵,
∴33≤x≤38,
∵x为正整数,
∴x=34,35,36,37,38,
即:共有5种方案;
(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,
∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,
当100<k<150时,y1随x的最大而增大,
∴x=38时,y1取得最大值,
即:购进电冰箱38台,空调62台,总利润最大,
当0<k<100时,y1随x的最大而减小,
∴x=34时,y1取得最大值,
即:购进电冰箱34台,空调66台,总利润最大,
当k=100时,无论采取哪种方案,y1恒为20000元.
【点睛】
本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.
20、见解析
【解析】
根据∠ABD=∠DCA,∠ACB=∠DBC,求证∠ABC=∠DCB,然后利用AAS可证明△ABC≌△DCB,即可证明结论.
【详解】
证明:∵∠ABD=∠DCA,∠DBC=∠ACB
∴∠ABD+∠DBC=∠DCA+∠ACB
即∠ABC=∠DCB
在△ABC和△DCB中
∴△ABC≌△DCB(ASA)
∴AB=DC
【点睛】
本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC≌△DCB.难度不大,属于基础题.
21、(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108°;(2)2人都是“喜欢乘车”的学生的概率为.
【解析】
(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.
【详解】
(1)被调查的总人数为25÷50%=50人;
则步行的人数为50﹣25﹣15=10人;
如图所示条形图,
“骑车”部分所对应的圆心角的度数=×360°=108°;
(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,
则有AB、AC、AD、BC、BD、CD这6种等可能的情况,
其中2人都是“喜欢乘车”的学生有3种结果,
所以2人都是“喜欢乘车”的学生的概率为.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
22、6×10+4=82 48×52+4
【解析】
(1)根据题目中的式子的变化规律可以解答本题;
(2)根据题目中的式子的变化规律可以解答本题;
(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
【详解】
解:(1)由题目中的式子可得,
第⑥个等式:6×10+4=82,
故答案为6×10+4=82;
(2)由题意可得,
48×52+4=502,
故答案为48×52+4;
(3)第n个等式是:n×(n+4)+4=(n+2)2,
证明:∵n×(n+4)+4
=n2+4n+4
=(n+2)2,
∴n×(n+4)+4=(n+2)2成立.
【点睛】
本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
23、 (x﹣y)2;2.
【解析】
首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.
【详解】
原式= x2﹣4y2+4xy(5y2-2xy)÷4xy
=x2﹣4y2+5y2﹣2xy
=x2﹣2xy+y2,
=(x﹣y)2,
当x=2028,y=2时,
原式=(2028﹣2)2=(﹣2)2=2.
【点睛】
本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.
24、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样.
【解析】
(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;
【详解】
(1)∵共有1种等可能的结果,落回到圈A的只有1种情况,
∴落回到圈A的概率P1=;
(2)列表得:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),
∴最后落回到圈A的概率P2==,
∴她与嘉嘉落回到圈A的可能性一样.
【点睛】
此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数.
湖北省咸宁市联考2024届九年级下学期中考模拟数学试卷(含解析): 这是一份湖北省咸宁市联考2024届九年级下学期中考模拟数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省黄石市2021-2022学年中考联考数学试卷含解析: 这是一份湖北省黄石市2021-2022学年中考联考数学试卷含解析,共23页。试卷主要包含了下面计算中,正确的是,下列实数中,无理数是等内容,欢迎下载使用。
湖北省咸宁市三校联考2021-2022学年中考联考数学试卷含解析: 这是一份湖北省咸宁市三校联考2021-2022学年中考联考数学试卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是,对于函数y=,下列说法正确的是等内容,欢迎下载使用。