湖北省黄石市阳新一中卓越联盟2021-2022学年中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某青年排球队12名队员年龄情况如下:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这12名队员年龄的众数、中位数分别是( )
A.20,19 B.19,19 C.19,20.5 D.19,20
2.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A.84 B.336 C.510 D.1326
3.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为( )
A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)
4.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )
A. B. C.1 D.
5.下列由左边到右边的变形,属于因式分解的是( ).
A.(x+1)(x-1)=x2-1
B.x2-2x+1=x(x-2)+1
C.a2-b2=(a+b)(a-b)
D.mx+my+nx+ny=m(x+y)+n(x+y)
6.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为( )
A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm2
7.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为( )
A. B. C. D.
8.在△ABC中,∠C=90°,,那么∠B的度数为( )
A.60° B.45° C.30° D.30°或60°
9.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( )
A.350 B.351 C.356 D.358
10.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为( )
A.54° B.64° C.74° D.26°
11.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的( )
A. B.
C. D.
12.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
次序
第一次
第二次
第三次
第四次
第五次
甲命中的环数(环)
6
7
8
6
8
乙命中的环数(环)
5
10
7
6
7
根据以上数据,下列说法正确的是( )
A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
C.甲、乙成绩的众数相同 D.甲的成绩更稳定
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.
14.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.
15.不等式1﹣2x<6的负整数解是___________.
16.的相反数是_____,倒数是_____,绝对值是_____
17.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.
18.若方程 x2+(m2﹣1)x+1+m=0的两根互为相反数,则 m=______
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:; 解方程:
20.(6分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
21.(6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
22.(8分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.
(1)判断:一个内角为120°的菱形 等距四边形.(填“是”或“不是”)
(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为 端点均为非等距点的对角线长为
(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.
23.(8分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
品种
A
B
原来的运费
45
25
现在的运费
30
20
(1)求每次运输的农产品中A,B产品各有多少件;
(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.
24.(10分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.
25.(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
26.(12分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
(1)求证:∠CBE=∠F;
(2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.
27.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).
(1)求抛物线的表达式;
(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
【详解】
这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
故选D.
【点睛】
本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
2、C
【解析】
由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,
故选:C.
点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.
3、A
【解析】
作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.
【详解】
解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:
则∠ADO=∠OEC=90°,∴∠1+∠1=90°.
∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.
∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.
在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).
故选A.
【点睛】
本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.
4、C
【解析】
作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.
【详解】
试题分析:作MH⊥AC于H,如图,
∵四边形ABCD为正方形,
∴∠MAH=45°,
∴△AMH为等腰直角三角形,
∴AH=MH=AM=×2=,
∵CM平分∠ACB,
∴BM=MH=,
∴AB=2+,
∴AC=AB=(2+)=2+2,
∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴,即,
∴ON=1.
故选C.
【点睛】
本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.
5、C
【解析】
因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
【详解】
解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
故选择C.
【点睛】
本题考查了因式分解的定义,牢记定义是解题关键.
6、B
【解析】
试题分析:底面积是:9πcm1,
底面周长是6πcm,则侧面积是:×6π×5=15πcm1.
则这个圆锥的全面积为:9π+15π=14πcm1.
故选B.
考点:圆锥的计算.
7、A
【解析】
根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.
【详解】
现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.
依题意得:,
故选A.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
8、C
【解析】
根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
【详解】
解:∵,
∴∠A=60°.
∵∠C=90°,
∴∠B=90°-60°=30°.
点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
9、B
【解析】
根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
【详解】
解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
设小昱所写的第n个数为101,
根据题意得:101=1+(n-1)×2,
整理得:2(n-1)=100,即n-1=50,
解得:n=51,
则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
故选B.
【点睛】
此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
10、B
【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【详解】
∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=26°,
∴∠BCA=∠DAC=26°,
∴∠OBC=90°﹣26°=64°.
故选B.
【点睛】
本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
11、D
【解析】
当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
【详解】
解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
∴直线经过一、二、四象限,双曲线在二、四象限.
故选D.
【点睛】
本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
12、D
【解析】
根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
【详解】
把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
∴甲、乙成绩的中位数相同,故选项B错误;
根据表格中数据可知,甲的众数是8环,乙的众数是7环,
∴甲、乙成绩的众数不同,故选项C错误;
甲命中的环数的平均数为:(环),
乙命中的环数的平均数为:(环),
∴甲的平均数等于乙的平均数,故选项A错误;
甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
因为2.8>0.8,
所以甲的稳定性大,故选项D正确.
故选D.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.
【详解】
设大和尚x人,小和尚y人,由题意可得
.
故答案为.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.
14、
【解析】
列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
【详解】
解:列表如下:
5
6
7
8
9
5
﹣﹣﹣
(6、5)
(7、5)
(8、5)
(9、5)
6
(5、6)
﹣﹣﹣
(7、6)
(8、6)
(9、6)
7
(5、7)
(6、7)
﹣﹣﹣
(8、7)
(9、7)
8
(5、8)
(6、8)
(7、8)
﹣﹣﹣
(9、8)
9
(5、9)
(6、9)
(7、9)
(8、9)
﹣﹣﹣
所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
则P(恰好是两个连续整数)=
故答案为.
【点睛】
此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
15、﹣2,﹣1
【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.
解:1﹣2x<6,
移项得:﹣2x<6﹣1,
合并同类项得:﹣2x<5,
不等式的两边都除以﹣2得:x>﹣,
∴不等式的负整数解是﹣2,﹣1,
故答案为:﹣2,﹣1.
点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.
16、 ,
【解析】
∵只有符号不同的两个数是互为相反数,
∴的相反数是;
∵乘积为1的两个数互为倒数,
∴的倒数是;
∵负数得绝对值是它的相反数,
∴绝对值是
故答案为(1). (2). (3).
17、
【解析】
本题可根据比例线段进行求解.
【详解】
解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=12=600000cm=6km.
故答案为6.
【点睛】
本题主要考查比例尺和比例线段的相关知识.
18、﹣1
【解析】
根据“方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可.
【详解】
∵方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数,
∴1﹣m2=0,
解得:m=1 或﹣1,
把 m=1代入原方程得:
x2+2=0,
该方程无解,
∴m=1不合题意,舍去,
把 m=﹣1代入原方程得:
x2=0,
解得:x1=x2=0,(符合题意),
∴m=﹣1,
故答案为﹣1.
【点睛】
本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)2 (2)
【解析】
(1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
(1)原式==2;
(2)
∴
【点睛】
本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.
20、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
【解析】
试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
(2)先求出C的人数,再求出C的百分比即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
试题解析:(1)根据题意得: 15÷30%=50(名).
答;在这项调查中,共调查了50名学生;
(2)图如下:
(3)用A表示男生,B表示女生,画图如下:
共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是.
21、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
22、(1)是;(2)见解析;(3)150°.
【解析】
(1)由菱形的性质和等边三角形的判定与性质即可得出结论;
(2)根据题意画出图形,由勾股定理即可得出答案;
(3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.
【详解】
解:(1)一个内角为120°的菱形是等距四边形;
故答案为是;
(2)如图2,图3所示:
在图2中,由勾股定理得:
在图3中,由勾股定理得:
故答案为
(3)解:连接BD.如图1所示:
∵△ABE与△CDE都是等腰直角三角形,
∴DE=EC,AE=EB,
∠DEC+∠BEC=∠AEB+∠BEC,
即∠AEC=∠DEB,
在△AEC和△BED中, ,
∴△AEC≌△BED(SAS),
∴AC=BD,
∵四边形ABCD是以A为等距点的等距四边形,
∴AD=AB=AC,
∴AD=AB=BD,
∴△ABD是等边三角形,
∴∠DAB=60°,
∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,
在△AED和△AEC中,
∴△AED≌△AEC(SSS),
∴∠CAE=∠DAE=15°,
∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,
∵AB=AC,AC=AD,
∴
∴∠BCD=∠ACB+∠ACD=75°+75°=150°.
【点睛】
本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
23、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.
【解析】
(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,
(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.
【详解】
解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,
根据题意得:
,
解得:,
答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,
(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,
增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,
根据题意得:W=30(10+m)+20(38-m)=10m+1060,
由题意得:38-m≤2(10+m),
解得:m≥6,
即6≤m≤8,
∵一次函数W随m的增大而增大
∴当m=6时,W最小=1120,
答:产品件数增加后,每次运费最少需要1120元.
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.
24、
【解析】
先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
【详解】
原式=
=1+
=1+
=
当x=2cos30°+tan45°
=2×+1
=+1时.
=
【点睛】
本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
25、见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
26、(1)详见解析;(1)
【解析】
(1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF =90∘,由FD⊥OC得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;
(1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE =30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.
【详解】
(1)证明:连接OE交DF于点H,
∵EF是⊙O的切线,OE是⊙O的半径,
∴OE⊥EF.
∴∠F+∠EHF=90°.
∵FD⊥OC,
∴∠DOH+∠DHO=90°.
∵∠EHF=∠DHO,
∴∠F=∠DOH.
∵∠CBE=∠DOH,
∴
(1)解:∵∠CBE=15°,
∴∠F=∠COE=1∠CBE=30°.
∵⊙O的半径是,点D是OC中点,
∴.
在Rt△ODH中,cos∠DOH=,
∴OH=1.
∴.
在Rt△FEH中,
∴
【点睛】
本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.
27、 (1) y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).
【解析】
(1)将点B坐标代入解析式求得a的值即可得;
(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得=
==,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;
(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.
【详解】
解:(1)把点B(-,2)代入y=a(x-)2-2,
解得a=1,
∴抛物线的表达式为y=(x-)2-2,
(2)由y=(x-)2-2知A(,-2),
设直线AB表达式为y=kx+b,代入点A,B的坐标得,
解得,
∴直线AB的表达式为y=-2x-1,
易求E(0,-1),F(0,-),M(-,0),
若∠OPM=∠MAF,
∴OP∥AF,
∴△OPE∽△FAE,
∴,
∴OP=FA= ,
设点P(t,-2t-1),则,
解得t1=-,t2=-,
由对称性知,当t1=-时,也满足∠OPM=∠MAF,
∴t1=-,t2=-都满足条件,
∵△POE的面积=OE·|t|,
∴△POE的面积为或;
(3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,
设Q(a,-2a-1),则NE=-a,QN=-2a.
由翻折知QN′=QN=-2a,N′E=NE=-a,
由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
∴==,即===2,
∴QR=2,ES= ,
由NE+ES=NS=QR可得-a+=2,
解得a=-,
∴Q(-,),
如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.
设NE=a,则N′E=a.
易知RN′=2,SN′=1,QN′=QN=3,
∴QR=,SE=-a.
在Rt△SEN′中,(-a)2+12=a2,
解得a=,
∴Q(-,2),
如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.
设NE=a,则N′E=a.
易知RN′=2,SN′=1,QN′=QN=3,
∴QR=,SE=-a.
在Rt△SEN′中,(-a)2+12=a2,
解得a=,
∴Q(,2).
综上,点Q的坐标为(-,)或(-,2)或(,2).
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.
湖北省黄石市阳新县部分学校2024届九年级下学期中考适应性考试数学试卷(含解析): 这是一份湖北省黄石市阳新县部分学校2024届九年级下学期中考适应性考试数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题解答应写出文字说明等内容,欢迎下载使用。
2024年湖北省黄石市阳新县部分学校中考二模数学试题(含解析): 这是一份2024年湖北省黄石市阳新县部分学校中考二模数学试题(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省黄石市阳新一中卓越联盟2022年中考数学最后冲刺模拟试卷含解析: 这是一份湖北省黄石市阳新一中卓越联盟2022年中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了如图所示的几何体的俯视图是,函数中,x的取值范围是等内容,欢迎下载使用。