|试卷下载
搜索
    上传资料 赚现金
    湖北省黄石市阳新一中卓越联盟2021-2022学年中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    湖北省黄石市阳新一中卓越联盟2021-2022学年中考适应性考试数学试题含解析01
    湖北省黄石市阳新一中卓越联盟2021-2022学年中考适应性考试数学试题含解析02
    湖北省黄石市阳新一中卓越联盟2021-2022学年中考适应性考试数学试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省黄石市阳新一中卓越联盟2021-2022学年中考适应性考试数学试题含解析

    展开
    这是一份湖北省黄石市阳新一中卓越联盟2021-2022学年中考适应性考试数学试题含解析,共25页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某青年排球队12名队员年龄情况如下:
    年龄
    18
    19
    20
    21
    22
    人数
    1
    4
    3
    2
    2
    则这12名队员年龄的众数、中位数分别是( )
    A.20,19 B.19,19 C.19,20.5 D.19,20
    2.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是(  )

    A.84 B.336 C.510 D.1326
    3.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为(  )

    A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)
    4.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )

    A. B. C.1 D.
    5.下列由左边到右边的变形,属于因式分解的是(  ).
    A.(x+1)(x-1)=x2-1
    B.x2-2x+1=x(x-2)+1
    C.a2-b2=(a+b)(a-b)
    D.mx+my+nx+ny=m(x+y)+n(x+y)
    6.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为(  )
    A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm2
    7.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为(  )
    A. B. C. D.
    8.在△ABC中,∠C=90°,,那么∠B的度数为( )
    A.60° B.45° C.30° D.30°或60°
    9.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?(  )
    A.350 B.351 C.356 D.358
    10.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为(  )

    A.54° B.64° C.74° D.26°
    11.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的(  )
    A. B.
    C. D.
    12.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
    次序
    第一次
    第二次
    第三次
    第四次
    第五次
    甲命中的环数(环)
    6
    7
    8
    6
    8
    乙命中的环数(环)
    5
    10
    7
    6
    7
    根据以上数据,下列说法正确的是( )
    A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
    C.甲、乙成绩的众数相同 D.甲的成绩更稳定
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.
    14.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.

    15.不等式1﹣2x<6的负整数解是___________.
    16.的相反数是_____,倒数是_____,绝对值是_____
    17.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.
    18.若方程 x2+(m2﹣1)x+1+m=0的两根互为相反数,则 m=______
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)计算:; 解方程:
    20.(6分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
    (1)在这项调查中,共调查了多少名学生?
    (2)将两个统计图补充完整;
    (3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

    21.(6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
    22.(8分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.

    (1)判断:一个内角为120°的菱形  等距四边形.(填“是”或“不是”)
    (2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为   端点均为非等距点的对角线长为  
    (3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.
    23.(8分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
    品种
    A
    B
    原来的运费
    45
    25
    现在的运费
    30
    20
    (1)求每次运输的农产品中A,B产品各有多少件;
    (2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.
    24.(10分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.
    25.(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)

    26.(12分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
    (1)求证:∠CBE=∠F;
    (2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.

    27.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).
    (1)求抛物线的表达式;
    (2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
    (3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
    【详解】
    这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
    故选D.
    【点睛】
    本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
    2、C
    【解析】
    由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,
    故选:C.
    点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.
    3、A
    【解析】
    作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.
    【详解】
    解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:

    则∠ADO=∠OEC=90°,∴∠1+∠1=90°.
    ∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.
    ∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.
    在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).
    故选A.
    【点睛】
    本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.
    4、C
    【解析】
    作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.
    【详解】
    试题分析:作MH⊥AC于H,如图,

    ∵四边形ABCD为正方形,
    ∴∠MAH=45°,
    ∴△AMH为等腰直角三角形,
    ∴AH=MH=AM=×2=,
    ∵CM平分∠ACB,
    ∴BM=MH=,
    ∴AB=2+,
    ∴AC=AB=(2+)=2+2,
    ∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,
    ∵BD⊥AC,
    ∴ON∥MH,
    ∴△CON∽△CHM,
    ∴,即,
    ∴ON=1.
    故选C.
    【点睛】
    本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.
    5、C
    【解析】
    因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
    【详解】
    解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
    故选择C.
    【点睛】
    本题考查了因式分解的定义,牢记定义是解题关键.
    6、B
    【解析】
    试题分析:底面积是:9πcm1,
    底面周长是6πcm,则侧面积是:×6π×5=15πcm1.
    则这个圆锥的全面积为:9π+15π=14πcm1.
    故选B.
    考点:圆锥的计算.
    7、A
    【解析】
    根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.
    【详解】
    现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.
    依题意得:,
    故选A.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    8、C
    【解析】
    根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
    【详解】
    解:∵,
    ∴∠A=60°.
    ∵∠C=90°,
    ∴∠B=90°-60°=30°.
    点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
    9、B
    【解析】
    根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
    【详解】
    解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
    设小昱所写的第n个数为101,
    根据题意得:101=1+(n-1)×2,
    整理得:2(n-1)=100,即n-1=50,
    解得:n=51,
    则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
    故选B.
    【点睛】
    此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
    10、B
    【解析】
    根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
    【详解】
    ∵四边形ABCD为菱形,
    ∴AB∥CD,AB=BC,
    ∴∠MAO=∠NCO,∠AMO=∠CNO,
    在△AMO和△CNO中,

    ∴△AMO≌△CNO(ASA),
    ∴AO=CO,
    ∵AB=BC,
    ∴BO⊥AC,
    ∴∠BOC=90°,
    ∵∠DAC=26°,
    ∴∠BCA=∠DAC=26°,
    ∴∠OBC=90°﹣26°=64°.
    故选B.
    【点睛】
    本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
    11、D
    【解析】
    当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
    【详解】
    解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
    ∴直线经过一、二、四象限,双曲线在二、四象限.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
    12、D
    【解析】
    根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
    【详解】
    把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
    把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
    ∴甲、乙成绩的中位数相同,故选项B错误;
    根据表格中数据可知,甲的众数是8环,乙的众数是7环,
    ∴甲、乙成绩的众数不同,故选项C错误;
    甲命中的环数的平均数为:(环),
    乙命中的环数的平均数为:(环),
    ∴甲的平均数等于乙的平均数,故选项A错误;
    甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
    乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
    因为2.8>0.8,
    所以甲的稳定性大,故选项D正确.
    故选D.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.
    【详解】
    设大和尚x人,小和尚y人,由题意可得

    故答案为.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.
    14、
    【解析】
    列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
    【详解】
    解:列表如下:

    5
    6
    7
    8
    9
    5
    ﹣﹣﹣
    (6、5)
    (7、5)
    (8、5)
    (9、5)
    6
    (5、6)
    ﹣﹣﹣
    (7、6)
    (8、6)
    (9、6)
    7
    (5、7)
    (6、7)
    ﹣﹣﹣
    (8、7)
    (9、7)
    8
    (5、8)
    (6、8)
    (7、8)
    ﹣﹣﹣
    (9、8)
    9
    (5、9)
    (6、9)
    (7、9)
    (8、9)
    ﹣﹣﹣
    所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
    则P(恰好是两个连续整数)=
    故答案为.
    【点睛】
    此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
    15、﹣2,﹣1
    【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.
    解:1﹣2x<6,
    移项得:﹣2x<6﹣1,
    合并同类项得:﹣2x<5,
    不等式的两边都除以﹣2得:x>﹣,
    ∴不等式的负整数解是﹣2,﹣1,
    故答案为:﹣2,﹣1.
    点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.
    16、 ,
    【解析】
    ∵只有符号不同的两个数是互为相反数,
    ∴的相反数是;
    ∵乘积为1的两个数互为倒数,
    ∴的倒数是;
    ∵负数得绝对值是它的相反数,
    ∴绝对值是
    故答案为(1). (2). (3).
    17、
    【解析】
    本题可根据比例线段进行求解.
    【详解】
    解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=12=600000cm=6km.
    故答案为6.
    【点睛】
    本题主要考查比例尺和比例线段的相关知识.
    18、﹣1
    【解析】
    根据“方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可.
    【详解】
    ∵方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数,
    ∴1﹣m2=0,
    解得:m=1 或﹣1,
    把 m=1代入原方程得:
    x2+2=0,
    该方程无解,
    ∴m=1不合题意,舍去,
    把 m=﹣1代入原方程得:
    x2=0,
    解得:x1=x2=0,(符合题意),
    ∴m=﹣1,
    故答案为﹣1.
    【点睛】
    本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)2 (2)
    【解析】
    (1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    (1)原式==2;
    (2)



    【点睛】
    本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.
    20、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
    【解析】
    试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
    (2)先求出C的人数,再求出C的百分比即可;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
    试题解析:(1)根据题意得: 15÷30%=50(名).
    答;在这项调查中,共调查了50名学生;
    (2)图如下:

    (3)用A表示男生,B表示女生,画图如下:

    共有20种情况,同性别学生的情况是8种,
    则刚好抽到同性别学生的概率是.
    21、(1)20%;(2)能.
    【解析】
    (1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
    (2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
    【详解】
    (1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
    解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
    答:该企业从2014年到2016年利润的年平均增长率为20%.
    (2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
    所以该企业2017年的利润能超过3.4亿元.
    【点睛】
    此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
    22、(1)是;(2)见解析;(3)150°.
    【解析】
    (1)由菱形的性质和等边三角形的判定与性质即可得出结论;
    (2)根据题意画出图形,由勾股定理即可得出答案;
    (3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.
    【详解】
    解:(1)一个内角为120°的菱形是等距四边形;
    故答案为是;
    (2)如图2,图3所示:
    在图2中,由勾股定理得:
    在图3中,由勾股定理得:
    故答案为
    (3)解:连接BD.如图1所示:
    ∵△ABE与△CDE都是等腰直角三角形,
    ∴DE=EC,AE=EB,
    ∠DEC+∠BEC=∠AEB+∠BEC,
    即∠AEC=∠DEB,
    在△AEC和△BED中, ,
    ∴△AEC≌△BED(SAS),
    ∴AC=BD,
    ∵四边形ABCD是以A为等距点的等距四边形,
    ∴AD=AB=AC,
    ∴AD=AB=BD,
    ∴△ABD是等边三角形,
    ∴∠DAB=60°,
    ∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,
    在△AED和△AEC中,
    ∴△AED≌△AEC(SSS),
    ∴∠CAE=∠DAE=15°,
    ∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,
    ∵AB=AC,AC=AD,

    ∴∠BCD=∠ACB+∠ACD=75°+75°=150°.

    【点睛】
    本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
    23、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.
    【解析】
    (1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.
    【详解】
    解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,
    根据题意得:

    解得:,
    答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,
    增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,
    根据题意得:W=30(10+m)+20(38-m)=10m+1060,
    由题意得:38-m≤2(10+m),
    解得:m≥6,
    即6≤m≤8,
    ∵一次函数W随m的增大而增大
    ∴当m=6时,W最小=1120,
    答:产品件数增加后,每次运费最少需要1120元.
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.
    24、
    【解析】
    先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
    【详解】
    原式=
    =1+
    =1+
    =
    当x=2cos30°+tan45°
    =2×+1
    =+1时.
    =
    【点睛】
    本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
    25、见解析
    【解析】
    试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
    应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
    试题解析:
    探究:∵四边形ABCD、四边形CEFG均为菱形,
    ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
    ∵∠A=∠F,
    ∴∠BCD=∠ECG.
    ∴∠BCD-∠ECD=∠ECG-∠ECD,
    即∠BCE=∠DCG.
    在△BCE和△DCG中,

    ∴△BCE≌△DCG(SAS),
    ∴BE=DG.
    应用:∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∵BE=DG,
    ∴S△ABE+S△CDE=S△BEC=S△CDG=8,
    ∵AE=3ED,
    ∴S△CDE= ,
    ∴S△ECG=S△CDE+S△CDG=10
    ∴S菱形CEFG=2S△ECG=20.
    26、(1)详见解析;(1)
    【解析】
    (1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF =90∘,由FD⊥OC得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;
    (1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE =30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.
    【详解】
    (1)证明:连接OE交DF于点H,
    ∵EF是⊙O的切线,OE是⊙O的半径,
    ∴OE⊥EF.
    ∴∠F+∠EHF=90°.
    ∵FD⊥OC,
    ∴∠DOH+∠DHO=90°.
    ∵∠EHF=∠DHO,
    ∴∠F=∠DOH.
    ∵∠CBE=∠DOH,

    (1)解:∵∠CBE=15°,
    ∴∠F=∠COE=1∠CBE=30°.
    ∵⊙O的半径是,点D是OC中点,
    ∴.
    在Rt△ODH中,cos∠DOH=,
    ∴OH=1.
    ∴.
    在Rt△FEH中,


    【点睛】
    本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.
    27、 (1) y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).
    【解析】
    (1)将点B坐标代入解析式求得a的值即可得;
    (2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得=
    ==,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;
    (3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.
    【详解】
    解:(1)把点B(-,2)代入y=a(x-)2-2,
    解得a=1,
    ∴抛物线的表达式为y=(x-)2-2,
    (2)由y=(x-)2-2知A(,-2),
    设直线AB表达式为y=kx+b,代入点A,B的坐标得,
    解得,
    ∴直线AB的表达式为y=-2x-1,
    易求E(0,-1),F(0,-),M(-,0),
    若∠OPM=∠MAF,
    ∴OP∥AF,
    ∴△OPE∽△FAE,
    ∴,
    ∴OP=FA= ,
    设点P(t,-2t-1),则,
    解得t1=-,t2=-,
    由对称性知,当t1=-时,也满足∠OPM=∠MAF,
    ∴t1=-,t2=-都满足条件,
    ∵△POE的面积=OE·|t|,
    ∴△POE的面积为或;
    (3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,

    设Q(a,-2a-1),则NE=-a,QN=-2a.
    由翻折知QN′=QN=-2a,N′E=NE=-a,
    由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
    ∴==,即===2,
    ∴QR=2,ES= ,
    由NE+ES=NS=QR可得-a+=2,
    解得a=-,
    ∴Q(-,),
    如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.

    设NE=a,则N′E=a.
    易知RN′=2,SN′=1,QN′=QN=3,
    ∴QR=,SE=-a.
    在Rt△SEN′中,(-a)2+12=a2,
    解得a=,
    ∴Q(-,2),
    如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.

    设NE=a,则N′E=a.
    易知RN′=2,SN′=1,QN′=QN=3,
    ∴QR=,SE=-a.
    在Rt△SEN′中,(-a)2+12=a2,
    解得a=,
    ∴Q(,2).
    综上,点Q的坐标为(-,)或(-,2)或(,2).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.

    相关试卷

    湖北省黄石市阳新县部分学校2024届九年级下学期中考适应性考试数学试卷(含解析): 这是一份湖北省黄石市阳新县部分学校2024届九年级下学期中考适应性考试数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题解答应写出文字说明等内容,欢迎下载使用。

    2024年湖北省黄石市阳新县部分学校中考二模数学试题(含解析): 这是一份2024年湖北省黄石市阳新县部分学校中考二模数学试题(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省黄石市阳新一中卓越联盟2022年中考数学最后冲刺模拟试卷含解析: 这是一份湖北省黄石市阳新一中卓越联盟2022年中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了如图所示的几何体的俯视图是,函数中,x的取值范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map