|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省黄冈市初级中学2022年中考数学模试卷含解析
    立即下载
    加入资料篮
    湖北省黄冈市初级中学2022年中考数学模试卷含解析01
    湖北省黄冈市初级中学2022年中考数学模试卷含解析02
    湖北省黄冈市初级中学2022年中考数学模试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省黄冈市初级中学2022年中考数学模试卷含解析

    展开
    这是一份湖北省黄冈市初级中学2022年中考数学模试卷含解析,共24页。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列运算,结果正确的是(  )
    A.m2+m2=m4 B.2m2n÷mn=4m
    C.(3mn2)2=6m2n4 D.(m+2)2=m2+4
    2.如图,在中,.点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结.给出以下四个结论:①;②点是的中点;③;④,其中正确的个数是( )

    A.4 B.3 C.2 D.1
    3.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )
    A.16个 B.15个 C.13个 D.12个
    4.如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是  

    A.5:2 B.3:2 C.3:1 D.2:1
    5.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( )
    A.55×106 B.0.55×108 C.5.5×106 D.5.5×107
    6.下列几何体中,三视图有两个相同而另一个不同的是(  )

    A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)
    7.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为(  )

    A.38° B.39° C.42° D.48°
    8.已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 + x1 x22 的值为( )
    A.-6 B.- 3 C.3 D.6
    9.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )

    A.3 B.3.2 C.4 D.4.5
    10.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为(  )
    A. B. C. D.
    11.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足(  )

    A.a= B.a=2b C.a=b D.a=3b
    12.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为(  )

    A. B. C.4 D.2+
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.

    14.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.

    15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).

    16.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.
    17.点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是_____.
    18.如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 ______ .

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
    分 组
    频数
    频率
    第一组(0≤x<15)
    3
    0.15
    第二组(15≤x<30)
    6
    a
    第三组(30≤x<45)
    7
    0.35
    第四组(45≤x<60)
    b
    0.20
    (1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    20.(6分) 如图,在平面直角坐标系中,直线y1=2x+b与坐标轴交于A、B两点,与双曲线 (x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,点B的坐标为(0,﹣2).
    (1)求直线y1=2x+b及双曲线(x>0)的表达式;
    (2)当x>0时,直接写出不等式的解集;
    (3)直线x=3交直线y1=2x+b于点E,交双曲线(x>0)于点F,求△CEF的面积.

    21.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
    被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
    22.(8分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A,过点P(1,m)作直线PA⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP.
    (I)当m=3时,求点A的坐标及BC的长;
    (II)当m>1时,连接CA,若CA⊥CP,求m的值;
    (III)过点P作PE⊥PC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标.

    23.(8分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.

    24.(10分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.

    25.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.

    (1)直接写出关于原点的中心对称图形各顶点坐标:________________________;
    (2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长.
    26.(12分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.

    27.(12分)先化简,再求值:,其中x为方程的根.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.
    【详解】
    A. m2+m2=2m2,故此选项错误;
    B. 2m2n÷mn=4m,正确;
    C. (3mn2)2=9m2n4,故此选项错误;
    D. (m+2)2=m2+4m+4,故此选项错误.
    故答案选:B.
    【点睛】
    本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.
    2、C
    【解析】
    用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.
    【详解】
    解:由题意知,△ABC是等腰直角三角形,
    设AB=BC=2,则AC=2,
    ∵点D是AB的中点,
    ∴AD=BD=1,
    在Rt△DBC中,DC=,(勾股定理)
    ∵BG⊥CD,
    ∴∠DEB=∠ABC=90°,
    又∵∠CDB=∠BDE,
    ∴△CDB∽△BDE,
    ∴∠DBE=∠DCB, ,即
    ∴DE= ,BE=,
    在△GAB和△DBC中,
    ∴△GAB≌△DBC(ASA)
    ∴AG=DB=1,BG=CD=,
    ∵∠GAB+∠ABC=180°,
    ∴AG∥BC,
    ∴△AGF∽△CBF,
    ∴,且有AB=BC,故①正确,
    ∵GB=,AC=2,
    ∴AF==,故③正确,
    GF=,FE=BG﹣GF﹣BE=,故②错误,
    S△ABC=AB•AC=2,S△BDF=BF•DE=××=,故④正确.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.
    3、D
    【解析】
    由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.
    【详解】
    解:设白球个数为:x个,
    ∵摸到红色球的频率稳定在25%左右,
    ∴口袋中得到红色球的概率为25%,
    ∴ ,
    解得:x=12,
    经检验x=12是原方程的根,
    故白球的个数为12个.
    故选:D.
    【点睛】
    本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.
    4、C
    【解析】
    求出正六边形和阴影部分的面积即可解决问题;
    【详解】
    解:正六边形的面积,
    阴影部分的面积,
    空白部分与阴影部分面积之比是::1,
    故选C.
    【点睛】
    本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    5、D
    【解析】
    试题解析:55000000=5.5×107,
    故选D.
    考点:科学记数法—表示较大的数
    6、B
    【解析】
    根据三视图的定义即可解答.
    【详解】
    正方体的三视图都是正方形,故(1)不符合题意;
    圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;
    圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;
    三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;
    故选B.
    【点睛】
    本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.
    7、A
    【解析】
    分析:根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.
    详解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.
    故选A.
    点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.
    8、B
    【解析】
    根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.
    【详解】
    根据题意得:x1+x2=1,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×1=-1.
    故选B.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1•x2.
    9、B
    【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.
    10、C
    【解析】
    设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
    【详解】
    解:设大马有x匹,小马有y匹,由题意得:,
    故选C.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
    11、B
    【解析】
    从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.
    【详解】
    由图形可知,
    S2=(a-b)2+b(a+b)+ab=a2+2b2,
    S1=(a+b)2-S2=2ab-b2,
    ∵S2=2S1,
    ∴a2+2b2=2(2ab﹣b2),
    ∴a2﹣4ab+4b2=0,
    即(a﹣2b)2=0,
    ∴a=2b,
    故选B.
    【点睛】
    本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
    12、B
    【解析】
    根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
    【详解】
    如图:

    BC=AB=AC=1,
    ∠BCB′=120°,
    ∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、或.
    【解析】
    ①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题
    ②同①的解题思路一样
    【详解】
    解:分两种情况:
    ①如图1所示:
    设AD=x,延长A'D交AB于H,则A'H⊥AB,
    ∴∠AHD=∠C=90°,
    由勾股定理得:AB==13,
    ∵∠A=∠A,
    ∴△ADH∽△ABC,
    ∴,即,
    解得:DH=x,AH=x,
    ∵E是AB的中点,
    ∴AE=AB=,
    ∴HE=AE﹣AH=﹣x,
    由折叠的性质得:A'D=AD=x,A'E=AE=,
    ∴sin∠A=sin∠A'= ,
    解得:x= ;
    ②如图2所示:设AD=A'D=x,
    ∵A'D⊥AB,
    ∴∠A'HE=90°,
    同①得:A'E=AE=,DH=x,
    ∴A'H=A'D﹣DH=x﹣=x,
    ∴cos∠A=cos∠A'= ,
    解得:x= ;
    综上所述,AD的长为 或.
    故答案为 或.


    【点睛】
    此题考查了勾股定理,三角形相似,关键在于做辅助线
    14、60°
    【解析】
    解:∵BD是⊙O的直径,
    ∴∠BCD=90°(直径所对的圆周角是直角),
    ∵∠CBD=30°,
    ∴∠D=60°(直角三角形的两个锐角互余),
    ∴∠A=∠D=60°(同弧所对的圆周角相等);
    故答案是:60°
    15、
    【解析】
    设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.
    解:如图所示,

    在RtABC中,tan∠ACB=,∴BC=,
    同理:BD=,
    ∵两次测量的影长相差8米,∴=8,
    ∴x=4,
    故答案为4.
    “点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.
    16、a<2且a≠1
    【解析】
    将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.
    【详解】
    分式方程去分母得:x+a-2a=2(x-1),
    解得:x=2-a,
    ∵分式方程的解为正实数,
    ∴2-a>0,且2-a≠1,
    解得:a<2且a≠1.
    故答案为:a<2且a≠1.
    【点睛】
    分式方程的解.
    17、y2<y3<y1
    【解析】
    把点的坐标分别代入抛物线解析式可分别求得y1、y2、y3的值,比较可求得答案.
    【详解】
    ∵y=2x2-4x+c,
    ∴当x=-3时,y1=2×(-3)2-4×(-3)+c=30+c,
    当x=2时,y2=2×22-4×2+c=c,
    当x=3时,y3=2×32-4×3+c=6+c,
    ∵c<6+c<30+c,
    ∴y2<y3<y1,
    故答案为y2<y3<y1.
    【点睛】
    本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.
    18、4cm
    【解析】
    求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.
    【详解】
    扇形的弧长==4π,
    圆锥的底面半径为4π÷2π=2,
    故圆锥的高为:=4,
    故答案为4cm.
    【点睛】
    本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、0.3 4
    【解析】
    (1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    【详解】
    (1)a=1﹣0.15﹣0.35﹣0.20=0.3;
    ∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);
    故答案为0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.
    【点睛】
    本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    20、(1)直线解析式为y1=2x﹣2,双曲线的表达式为y2= (x>0);(2)0<x<2;
    (3)
    【解析】
    (1)将点B的代入直线y1=2x+b,可得b,则可以求得直线解析式;令y=0可得A点坐标为(1,0),又因为OA=AD,则D点坐标为(2,0),把x=2代入直线解析式,可得y=2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2= ,可得k=4,则双曲线的表达式为y2= (x>0).
    (2)由x的取值范围,结合图像可求得答案.
    (3)把x=3代入y2函数,可得y= ;把x=3代入y1函数,可得y=4,从而得到EF,由三角形的面积公式可得S△CEF=.
    【详解】
    解:(1)将点B的坐标(0,﹣2)代入直线y1=2x+b,可得
    ﹣2=b,
    ∴直线解析式为y1=2x﹣2,
    令y=0,则x=1,
    ∴A(1,0),
    ∵OA=AD,
    ∴D(2,0),
    把x=2代入y1=2x﹣2,可得
    y=2,
    ∴点C的坐标为(2,2),
    把(2,2)代入双曲线y2= ,可得k=2×2=4,
    ∴双曲线的表达式为y2= (x>0);
    (2)当x>0时,不等式>2x+b的解集为0<x<2;
    (3)把x=3代入y2=,可得y= ;把x=3代入y1=2x﹣2,可得y=4,
    ∴EF=4﹣=,
    ∴S△CEF=××(3﹣2)=,
    ∴△CEF的面积为.
    【点睛】
    本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.
    21、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
    【解析】
    分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
    (2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
    (3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
    详解:(1)被随机抽取的学生共有14÷28%=50(人);
    (2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
    活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
    如图所示:

    (3)参与了4项或5项活动的学生共有×2000=720(人).
    点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
    22、(I)4;(II) (III)(2,0)或(0,4)
    【解析】
    (I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;
    (II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;
    (III)如图,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PH⊥y轴于H,如图,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE′得到E′点坐标.
    【详解】
    解:(I)当m=3时,抛物线解析式为y=﹣x2+6x,
    当y=0时,﹣x2+6x=0,解得x1=0,x2=6,则A(6,0),
    抛物线的对称轴为直线x=3,
    ∵P(1,3),
    ∴B(1,5),
    ∵点B关于抛物线对称轴的对称点为C
    ∴C(5,5),
    ∴BC=5﹣1=4;
    (II)当y=0时,﹣x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),
    B(1,2m﹣1),
    ∵点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,
    ∴C(2m﹣1,2m﹣1),
    ∵PC⊥PA,
    ∴PC2+AC2=PA2,
    ∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,
    整理得2m2﹣5m+3=0,解得m1=1,m2=,
    即m的值为;
    (III)如图,
    ∵PE⊥PC,PE=PC,
    ∴△PME≌△CBP,
    ∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,
    而P(1,m)
    ∴2m﹣2=m,解得m=2,
    ∴ME=m﹣1=1,
    ∴E(2,0);
    作PH⊥y轴于H,如图,
    易得△PHE′≌△PBC,
    ∴PH=PB=m﹣1,HE′=BC=2m﹣2,
    而P(1,m)
    ∴m﹣1=1,解得m=2,
    ∴HE′=2m﹣2=2,
    ∴E′(0,4);
    综上所述,m的值为2,点E的坐标为(2,0)或(0,4).

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式.
    23、证明见解析.
    【解析】
    试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
    试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.
    考点:平行四边形的判定与性质.
    24、(1);(2)1<x<1.
    【解析】
    (1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
    (2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
    【详解】
    解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
    ∴n=﹣1+5,解得:n=1,
    ∴点A的坐标为(1,1).
    ∵反比例函数y=(k≠0)过点A(1,1),
    ∴k=1×1=1,
    ∴反比例函数的解析式为y=.
    联立,解得:或,
    ∴点B的坐标为(1,1).
    (2)观察函数图象,发现:
    当1<x<1.时,反比例函数图象在一次函数图象下方,
    ∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
    【点睛】
    本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
    25、(1),,;(2)作图见解析,面积,.
    【解析】
    (1)由在平面直角坐标系中的位置可得A、B、C的坐标,根据关于原点对称的点的坐标特点即可得、、的坐标;
    (2)由旋转的性质可画出旋转后图形,利用面积的和差计算出,然后根据扇形的面积公式求出,利用旋转过程中扫过的面积进行计算即可.再利用弧长公式求出点C所经过的路径长.
    【详解】
    解:(1)由在平面直角坐标系中的位置可得:
    ,,,
    ∵与关于原点对称,
    ∴,,
    (2)如图所示,即为所求,

    ∵,,
    ∴,
    ∴,
    ∵,
    ∴在旋转过程中所扫过的面积:

    点所经过的路径:

    【点睛】
    本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.
    26、见解析
    【解析】
    易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
    【详解】
    在平行四边形ABCD中,AB∥CD,AB=CD
    ∴∠ABE=∠CDF,
    又AE⊥BD,CF⊥BD
    ∴△ABE≌△CDF(AAS),
    ∴AE=CF
    又∠AEF=∠CFE,EF=FE,
    ∴△AEF≌△CFE(SAS)
    ∴AF=CE.
    【点睛】
    此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
    27、1
    【解析】
    先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.
    【详解】
    解:原式=.
    解得,

    ∵时,无意义,
    ∴取.
    当时,原式=.

    相关试卷

    2023年湖北省黄冈市教改联盟中考数学二模试卷(含解析): 这是一份2023年湖北省黄冈市教改联盟中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖北省黄冈市中考数学三模试卷(含解析): 这是一份2023年湖北省黄冈市中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2022年湖北省黄冈市初级中学中考二模数学试题含解析: 这是一份2022年湖北省黄冈市初级中学中考二模数学试题含解析,共20页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map