河南省商丘市虞城县重点中学2022年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.二次函数y=(2x-1)2+2的顶点的坐标是( )
A.(1,2) B.(1,-2) C.(,2) D.(-,-2)
2.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为( )
A.1 B.3 C.5 D.1或5
3.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )
①b<0<a; ②|b|<|a|; ③ab>0; ④a﹣b>a+b.
A.①② B.①④ C.②③ D.③④
4.计算±的值为( )
A.±3 B.±9 C.3 D.9
5.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )
A. B. C. D.
6.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于( )
A. B. C. D.
7.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是( )
A. B.
C. D.
8.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )
A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
9.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
A.米 B.米
C.米 D.米
10.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( )
A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=
二、填空题(共7小题,每小题3分,满分21分)
11.已知a+b=1,那么a2-b2+2b=________.
12.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )
A.1+ B.4+ C.4 D.-1+
13.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.
14.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.
15.因式分解:4ax2﹣4ay2=_____.
16.计算:2a×(﹣2b)=_____.
17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 ▲ (结果保留π).
三、解答题(共7小题,满分69分)
18.(10分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表.
| 种产品 | 种产品 |
成本(万元件) | 2 | 5 |
利润(万元件) | 1 | 3 |
(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?
19.(5分)如图,在中,,为边上的中线,于点E.
求证:;若,,求线段的长.
20.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.
21.(10分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?
22.(10分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.
(1)求李华选择的美食是羊肉泡馍的概率;
(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.
23.(12分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.
()请直接写出袋子中白球的个数.
()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
24.(14分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)
考点:二次函数
点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系
2、D
【解析】
分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
【详解】
当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
故选D.
【点睛】
本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
3、B
【解析】
分析:本题是考察数轴上的点的大小的关系.
解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.
故选B.
4、B
【解析】
∵(±9)2=81,
∴±±9.
故选B.
5、C
【解析】
先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
【详解】
解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
后面一排分别有2个、3个、1个小正方体搭成三个长方体,
并且这两排右齐,故从正面看到的视图为:
.
故选:C.
【点睛】
本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.
6、B
【解析】
由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.
【详解】
∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四边形ABCD为矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF与△CDF中,
,
∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四边形ABCD为矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
设FA=x,则FC=x,FD=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
则FD=6-x=.
故选B.
【点睛】
考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.
7、D
【解析】
根据函数的图象和所给出的图形分别对每一项进行判断即可.
【详解】
由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.
故选: D.
【点睛】
本题主要考查函数模型及其应用.
8、C
【解析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
∴a+b<1,ab<1,a﹣b<1,a÷b<1.
故选:C.
9、D
【解析】
先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.
故选D
10、D
【解析】
【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.
【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;
∵x1+x2<0,x1x2<0,
∴x1、x2异号,且负数的绝对值大,故C选项错误;
∵x1为一元二次方程2x2+2x﹣1=0的根,
∴2x12+2x1﹣1=0,
∴x12+x1=,故D选项正确,
故选D.
【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
解:∵a+b=1,
∴原式=
故答案为1.
【点睛】
本题考查的是平方差公式的灵活运用.
12、A
【解析】
根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
【详解】
如图,
∵点A坐标为(-2,2),
∴k=-2×2=-4,
∴反比例函数解析式为y=-,
∵OB=AB=2,
∴△OAB为等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵点B和点B′关于直线l对称,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y轴,
∴点B′的坐标为(- ,t),
∵PB=PB′,
∴t-2=|-|=,
整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
∴t的值为.
故选A.
【点睛】
本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
13、1
【解析】
题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.
【详解】
①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;
②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;
故腰长为1.
故答案为:1.
【点睛】
此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.
14、1 1
【解析】
根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“边角边”证明Rt△ABD和Rt△CDB全等;根据等底等高的三角形面积相等解答.
【详解】
有,Rt△ABD≌Rt△CDB,
理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,
在Rt△ABD和Rt△CDB中,
,
∴Rt△ABD≌Rt△CDB(SAS);
有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.
故答案为:1;1.
【点睛】
本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.
15、4a(x﹣y)(x+y)
【解析】
首先提取公因式4a,再利用平方差公式分解因式即可.
【详解】
4ax2-4ay2=4a(x2-y2)
=4a(x-y)(x+y).
故答案为4a(x-y)(x+y).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
16、﹣4ab
【解析】
根据单项式与单项式的乘法解答即可.
【详解】
2a×(﹣2b)=﹣4ab.
故答案为﹣4ab.
【点睛】
本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.
17、
【解析】
过D点作DF⊥AB于点F.
∵AD=1,AB=4,∠A=30°,
∴DF=AD•sin30°=1,EB=AB﹣AE=1.
∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积
=.
故答案为:.
三、解答题(共7小题,满分69分)
18、(1)生产产品8件,生产产品2件;(2)有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
【解析】
(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;
(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案.
【详解】
解:(1)设生产种产品件,则生产种产品件,
依题意得:,
解得: ,
则,
答:生产产品8件,生产产品2件;
(2)设生产产品件,则生产产品件
,
解得:.
因为为正整数,故或3;
答:共有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
【点睛】
此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
19、(1)见解析;(2).
【解析】
对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;
对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.
【详解】
解:(1)证明:∵,
∴.
又∵为边上的中线,
∴.
∵,
∴,
∴.
(2)∵,∴.
在中,根据勾股定理,得.
由(1)得,∴,
即,
∴.
【点睛】
此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.
20、(1)证明见解析(2)13
【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
【详解】
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)∵△ACB和△ECD都是等腰直角三角形
∴∠BAC=∠B=45°
∵△ACE≌△BCD
∴AE=BD=12,∠EAC=∠B=45°
∴∠EAD=∠EAC+∠BAC=90°,
∴△EAD是直角三角形
【点睛】
解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
21、12
【解析】
设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.
【详解】
解:设矩形的长为x步,则宽为(60﹣x)步,
依题意得:x(60﹣x)=864,
整理得:x2﹣60x+864=0,
解得:x=36或x=24(不合题意,舍去),
∴60﹣x=60﹣36=24(步),
∴36﹣24=12(步),
则该矩形的长比宽多12步.
【点睛】
此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.
22、(1);(2)见解析.
【解析】
(1)直接根据概率的意义求解即可;
(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.
【详解】
解:(1)李华选择的美食是羊肉泡馍的概率为;
(2)列表得:
| E | F | G | H |
A | AE | AF | AG | AH |
B | BE | BF | BG | BH |
C | CE | CF | CG | CH |
D | DE | DF | DG | DH |
由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,
所以李华和王涛选择的美食都是凉皮的概率为=.
【点睛】
本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)袋子中白球有2个;(2).
【解析】
试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
试题解析:(1)设袋子中白球有x个,
根据题意得:=,
解得:x=2,
经检验,x=2是原分式方程的解,
∴袋子中白球有2个;
(2)画树状图得:
∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
∴两次都摸到相同颜色的小球的概率为:.
考点:列表法与树状图法;概率公式.
24、(1)证明见解析;(2)AB、AD的长分别为2和1.
【解析】
(1)证Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.
【详解】
(1)证明:∵AB⊥OM于B,DE⊥ON于E,
∴.
在Rt△ABO与Rt△DEA中,
∵∴Rt△ABO≌Rt△DEA(HL).
∴∠AOB=∠DAE.∴AD∥BC.
又∵AB⊥OM,DC⊥OM,∴AB∥DC.
∴四边形ABCD是平行四边形.
∵,∴四边形ABCD是矩形;
(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.
设AD=x,则OA=x,AE=OE-OA=9-x.
在Rt△DEA中,由得:
,解得.
∴AD=1.即AB、AD的长分别为2和1.
【点睛】
矩形的判定和性质;掌握判断定证三角形全等是关键.
2023年河南省商丘市虞城县中考数学三模A卷(含图片答案): 这是一份2023年河南省商丘市虞城县中考数学三模A卷(含图片答案),共11页。
2023年河南省商丘市虞城县求实中学中考数学二模试卷(含解析): 这是一份2023年河南省商丘市虞城县求实中学中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题,八年级竞赛成绩的平均数等内容,欢迎下载使用。
2023年河南省商丘市虞城县求实中学中考数学二模试卷(含解析): 这是一份2023年河南省商丘市虞城县求实中学中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题,八年级竞赛成绩的平均数等内容,欢迎下载使用。