广东省东莞市长安中学2021-2022学年中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )
A.有两个不相等的实数根 B.没有实数根
C.有两个相等的实数根 D.有一个根是 0
2.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
节约用水量(单位:吨)
1
1.1
1.4
1
1.5
家庭数
4
6
5
3
1
这组数据的中位数和众数分别是( )
A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
3.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是( )
A.
B.
C.
D.
4.关于x的方程=无解,则k的值为( )
A.0或 B.﹣1 C.﹣2 D.﹣3
5.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
型号(厘米)
38
39
40
41
42
43
数量(件)
25
30
36
50
28
8
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
A.平均数 B.中位数 C.众数 D.方差
6.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=( )
A.2.5 B.3 C.4 D.5
7.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为( )
A.20° B.35° C.45° D.70°
8.﹣3的绝对值是( )
A.﹣3 B.3 C.- D.
9.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A.30 B.40 C.60 D.80
10.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )
A. B. C. D.
11.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. B. C. D.
12.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为( )
A.35.578×103 B.3.5578×104
C.3.5578×105 D.0.35578×105
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.
14.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.
15.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
16.如果两圆的半径之比为,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d的取值范围是__________.
17.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.
18.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
20.(6分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.
(1)求抛物线的函数表达式;
(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;
(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;
(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.
21.(6分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.
(1)若a+e=0,则代数式b+c+d= ;
(2)若a是最小的正整数,先化简,再求值:;
(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是 .
22.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).
(1)求一次函数与反比例函数的解析式;
(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.
23.(8分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
24.(10分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;
(2)化简:÷(1﹣)
25.(10分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.
请从下列A、B两题中任选一题作答,我选择 题.
A:①求线段AD的长;
②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:①求线段DE的长;
②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
26.(12分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.
27.(12分)计算:×(2﹣)﹣÷+.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.
【详解】
∵一次函数y=kx+b的图像经过第一、三、四象限
∴k>0, b<0
∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,
∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.
【点睛】
根的判别式
2、D
【解析】
分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
详解:这组数据的中位数是;
这组数据的众数是1.1.
故选D.
点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
3、B
【解析】
试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,
∴2k<0,得k<0,
∴k−2<0,1−k>0,
∴函数y=(k−2)x+1−k图象经过一、二、四象限,
故选B.
4、A
【解析】
方程两边同乘2x(x+3),得
x+3=2kx,
(2k-1)x=3,
∵方程无解,
∴当整式方程无解时,2k-1=0,k=,
当分式方程无解时,①x=0时,k无解,
②x=-3时,k=0,
∴k=0或时,方程无解,
故选A.
5、B
【解析】
分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
故选:C.
点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
6、A
【解析】
先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.
【详解】
∵∠ACB=90°,D为AB中点
∴CD=
∵点E、F分别为BC、BD中点
∴.
故答案为:A.
【点睛】
本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.
7、B
【解析】
解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.
8、B
【解析】
根据负数的绝对值是它的相反数,可得出答案.
【详解】
根据绝对值的性质得:|-1|=1.
故选B.
【点睛】
本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.
9、B
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM==a,
∴点A的坐标为(a,a).
∵点A在反比例函数y=的图象上,
∴a•a=a2=48,
解得:a=1,或a=-1(舍去).
∴AM=8,OM=6,OB=OA=1.
∵四边形OACB是菱形,点F在边BC上,
∴S△AOF=S菱形OBCA=OB•AM=2.
故选B.
【点睛】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
10、B
【解析】
根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
【详解】
解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
∴AC=A′C,
∴△ACA′是等腰直角三角形,
∴∠CAA′=45°,
∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
∴∠B=∠A′B′C=65°.
故选B.
【点睛】
本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
11、C
【解析】
解:把点(0,2)(a,0)代入,得b=2.则a=,
∵,
∴,
解得:k≥2.
故选C.
【点睛】
本题考查一次函数与一元一次不等式,属于综合题,难度不大.
12、B
【解析】
科学计数法是a×,且,n为原数的整数位数减一.
【详解】
解:35578= 3.5578×,
故选B.
【点睛】
本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
【详解】
画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:=.
故答案为:.
【点睛】
本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.
14、1
【解析】
根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.
【详解】
△=(﹣8)2﹣4m=0,
解得m=1,
故答案为:1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
15、(﹣2,2)
【解析】
试题分析:∵直线y=2x+4与y轴交于B点,
∴x=0时,
得y=4,
∴B(0,4).
∵以OB为边在y轴右侧作等边三角形OBC,
∴C在线段OB的垂直平分线上,
∴C点纵坐标为2.
将y=2代入y=2x+4,得2=2x+4,
解得x=﹣2.
所以C′的坐标为(﹣2,2).
考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.
16、.
【解析】
先根据比例式设两圆半径分别为,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.
【详解】
解:设两圆半径分别为,
由题意,得3x-2x=3,解得,
则两圆半径分别为,
所以当这两圆相交时,圆心距d的取值范围是,
即,
故答案为.
【点睛】
本题考查了圆和圆的位置与两圆的圆心距、半径的数量之间的关系,熟练掌握圆心距与圆位置关系的数量关系是解决本题的关键.
17、﹣2
【解析】
要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.
【详解】
过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.
设点A的坐标是(m,n),则AC=n,OC=m.
∵∠AOB=90°,
∴∠AOC+∠BOD=90°.
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC.
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA.
∴,
∵OB=1OA,
∴BD=1m,OD=1n.
因为点A在反比例函数y=的图象上,
∴mn=1.
∵点B在反比例函数y=的图象上,
∴B点的坐标是(-1n,1m).
∴k=-1n•1m=-4mn=-2.
故答案为-2.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.
18、1
【解析】
一组数据中出现次数最多的数据叫做众数,由此可得出答案.
【详解】
∵一组数据1,3,5,x,1,5的众数和中位数都是1,
∴x=1,
故答案为1.
【点睛】
本题考查了众数的知识,解答本题的关键是掌握众数的定义.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1
【解析】解:
取时,原式.
20、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.
【解析】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;
(2)OC∥DF,则 即可求解;
(3)由S△ACE=S△AME﹣S△CME即可求解;
(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.
【详解】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,
即: 解得:
故函数的表达式为: ①;
(2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,
∵OC∥DF,∴OF=5OA=5,
故点D的坐标为(﹣5,6),
将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:
即直线AD的表达式为:y=﹣x+1,
(3)设点E坐标为 则点M坐标为
则
∵故S△ACE有最大值,
当x=﹣2时,最大值为;
(4)存在,理由:
①当AP为平行四边形的一条边时,如下图,
设点D的坐标为
将点A向左平移2个单位、向上平移4个单位到达点P的位置,
同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,
则点Q的坐标为
将点Q的坐标代入①式并解得:
②当AP为平行四边形的对角线时,如下图,
设点Q坐标为点D的坐标为(m,n),
AP中点的坐标为(0,2),该点也是DQ的中点,
则: 即:
将点D坐标代入①式并解得:
故点D的横坐标为:或或.
【点睛】
本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.
21、 (1)0;(1) ,;(3) ﹣1<x<1.
【解析】
(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;
(1)根据题意可得:a=1,将分式计算并代入可得结论即可;
(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.
【详解】
解:(1)∵a+e=0,即a、e互为相反数,
∴点C表示原点,
∴b、d也互为相反数,
则a+b+c+d+e=0,
故答案为:0;
(1)∵a是最小的正整数,
∴a=1,
则原式=÷[+]
=÷
=•
=,
当a=1时,
原式==;
(3)∵A、B、C、D、E为连续整数,
∴b=a+1,c=a+1,d=a+3,e=a+4,
∵a+b+c+d=1,
∴a+a+1+a+1+a+3=1,
4a=﹣4,
a=﹣1,
∵MA+MD=3,
∴点M再A、D两点之间,
∴﹣1<x<1,
故答案为:﹣1<x<1.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.
22、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
【详解】
(1)把A(-1,2)代入,得到k2=-2,
∴反比例函数的解析式为.
∵B(m,-1)在上,∴m=2,
由题意,解得:,∴一次函数的解析式为y=-x+1.
(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【点睛】
本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
23、(1)证明见解析;(2)4.1.
【解析】
试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
考点:切线的性质.
24、(1)5(2)
【解析】
(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.
【详解】
解:(1)原式=4﹣2+2+2+1﹣4×
=7﹣2
=5;
(2)原式=÷
=•
=.
【点睛】
本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.
25、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).
【解析】
(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;
(1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;
②分三种情况利用方程的思想即可得出结论;
B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;
②先判断出∠APC=90°,再分情况讨论计算即可.
【详解】
解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,
∴A(3,0),C(0,2),
∴OA=3,OC=2.
∵AB⊥x轴,CB⊥y轴,∠AOC=90°,
∴四边形OABC是矩形,
∴AB=OC=2,BC=OA=3.
在Rt△ABC中,根据勾股定理得,AC==3.
故答案为2,3,3;
(1)选A.
①由(1)知,BC=3,AB=2,由折叠知,CD=AD.
在Rt△BCD中,BD=AB﹣AD=2﹣AD,
根据勾股定理得,CD1=BC1+BD1,
即:AD1=16+(2﹣AD)1,
∴AD=5;
②由①知,D(3,5),设P(0,y).
∵A(3,0),
∴AP1=16+y1,DP1=16+(y﹣5)1.
∵△APD为等腰三角形,
∴分三种情况讨论:
Ⅰ、AP=AD,
∴16+y1=15,
∴y=±3,
∴P(0,3)或(0,﹣3);
Ⅱ、AP=DP,
∴16+y1=16+(y﹣5)1,
∴y=,
∴P(0,);
Ⅲ、AD=DP,15=16+(y﹣5)1,
∴y=1或2,
∴P(0,1)或(0,2).
综上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).
选B.①由A①知,AD=5,由折叠知,AE=AC=1,DE⊥AC于E.
在Rt△ADE中,DE==;
②∵以点A,P,C为顶点的三角形与△ABC全等,
∴△APC≌△ABC,或△CPA≌△ABC,
∴∠APC=∠ABC=90°.
∵四边形OABC是矩形,
∴△ACO≌△CAB,
此时,符合条件,点P和点O重合,即:P(0,0);
如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,
∴,
∴,
∴AN=,
过点N作NH⊥OA,
∴NH∥OA,
∴△ANH∽△ACO,
∴,
∴,
∴NH=,AH=,
∴OH=,
∴N(),
而点P1与点O关于AC对称,
∴P1(),
同理:点B关于AC的对称点P1,
同上的方法得,P1(﹣).
综上所述:满足条件的点P的坐标为:(0,0),(),(﹣).
【点睛】
本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题.
26、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
【详解】
(1)把A(-1,2)代入,得到k2=-2,
∴反比例函数的解析式为.
∵B(m,-1)在上,∴m=2,
由题意,解得:,∴一次函数的解析式为y=-x+1.
(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【点睛】
本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
27、5-
【解析】
分析:先化简各二次根式,再根据混合运算顺序依次计算可得.
详解:原式=3×(2-)-+
=6--+
=5-
点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.
广东省汕头市聿怀中学2021-2022学年中考数学押题卷含解析: 这是一份广东省汕头市聿怀中学2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax1+bx+c,若分式方程无解,则a的值为等内容,欢迎下载使用。
广东省东莞市东方明珠中学2022年中考押题数学预测卷含解析: 这是一份广东省东莞市东方明珠中学2022年中考押题数学预测卷含解析,共20页。试卷主要包含了下列计算正确的是.等内容,欢迎下载使用。
2022年广东省东莞市常平嘉盛实验校中考押题数学预测卷含解析: 这是一份2022年广东省东莞市常平嘉盛实验校中考押题数学预测卷含解析,共21页。试卷主要包含了若点,sin45°的值等于等内容,欢迎下载使用。