福建省三明市列东中学2022年中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是( )
A.38 B.39 C.40 D.42
2.内角和为540°的多边形是( )
A. B. C. D.
3.下列运算错误的是( )
A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
4.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC= ( )
A. B.2 C.3 D.+2
5.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )
A. B. C. D.
6.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则( )
A.m≠±2 B.m=2 C.m=–2 D.m≠2
7.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )
A.2 B. C. D.
8.如图是正方体的表面展开图,则与“前”字相对的字是( )
A.认 B.真 C.复 D.习
9.化简:(a+)(1﹣)的结果等于( )
A.a﹣2 B.a+2 C. D.
10.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.
12.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.
13.如图,的半径为,点,,,都在上,,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_____.(结果保留)
14.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.
15.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小等于__________度.
16.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为_____度.
三、解答题(共8题,共72分)
17.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.
求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
18.(8分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
19.(8分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
20.(8分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=1.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
21.(8分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
y/cm
6.9
5.3
4.0
3.3
4.5
6
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
22.(10分) “食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
23.(12分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
24.如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.
(1)求证:四边形是平行四边形;
(2)如果,求证四边形是矩形.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
【详解】
解:由于共有6个数据,
所以中位数为第3、4个数的平均数,即中位数为=39,
故选:B.
【点睛】
本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
2、C
【解析】
试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.
考点:多边形内角与外角.
3、D
【解析】
【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
【详解】A、(m2)3=m6,正确;
B、a10÷a9=a,正确;
C、x3•x5=x8,正确;
D、a4+a3=a4+a3,错误,
故选D.
【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
4、C
【解析】
试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.
考点:角平分线的性质和中垂线的性质.
5、C
【解析】
试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.
故选C.
考点:三视图
6、D
【解析】
试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.
故选D
7、C
【解析】
解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.
点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
8、B
【解析】
分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
详解:由图形可知,与“前”字相对的字是“真”.
故选B.
点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
9、B
【解析】
解:原式====.
故选B.
考点:分式的混合运算.
10、B
【解析】
如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
NE的长,EF的长,则可求sin∠AFG的值.
【详解】
解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.
∵四边形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵点E是CD中点
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等边三角形,且E是CD中点
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=
由折叠性质可得∠AFG=∠EFG,
∴sin∠EFG= sin∠AFG = ,故选B.
【点睛】
本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.
【详解】
∵点A坐标为(3,4),
∴OA==5,
∴cosα=,
故答案为
【点睛】
本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.
12、1
【解析】
根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.
【详解】
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,
∴△NQC∽△MQA,
同理得:△DPC∽△MPA,
∵P、Q为对角线AC的三等分点,
∴,,
设CN=x,AM=1x,
∴,
解得,x=1,
∴CN=1,
故答案为1.
【点睛】
本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.
13、.
【解析】
根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.
【详解】
解:∵扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,
∴∠BOD=120°,
∴∠AOD=∠AOB+∠BOD=30°+120°=150°,
∴的长=.
故答案为:.
【点睛】
本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.
14、2
【解析】
连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.
【详解】
解:如图,连接PB、PC,
由二次函数的性质,OB=PB,PC=AC,
∵△ODA是等边三角形,
∴∠AOD=∠OAD=60°,
∴△POB和△ACP是等边三角形,
∵A(4,0),
∴OA=4,
∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×=2,
即两个二次函数的最大值之和等于2.
故答案为2.
【点睛】
本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.
15、45
【解析】
试题解析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.
∵AE=AC,
∴∠ACE=∠AEC=x+y,
∵BD=BC,
∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.
在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,
∴x+(90°-y)+(x+y)=180°,
解得x=45°,
∴∠DCE=45°.
考点:1.等腰三角形的性质;2.三角形内角和定理.
16、1.
【解析】
首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.
【详解】
解:∵弦AC与半径OB互相平分,
∴OA=AB,
∵OA=OC,
∴△OAB是等边三角形,
∴∠AOB=60°,
∴∠AOC=1°,
故答案为1.
【点睛】
本题主要考查了垂径定理的知识,解题的关键是证明△OAB是等边三角形,此题难度不大.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.
(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.
【详解】
证明:(1)∵在平行四边形ABCD中,AD∥BC,
∴∠AEB=∠EAD.
∵AE=AB,
∴∠ABE=∠AEB.
∴∠ABE=∠EAD.
(2)∵AD∥BC,
∴∠ADB=∠DBE.
∵∠ABE=∠AEB,∠AEB=2∠ADB,
∴∠ABE=2∠ADB.
∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.
∴AB=AD.
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
18、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析
【解析】
(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;
(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.
【详解】
(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,
根据题意得,2x+3×3x=550,
∴x=50,
经检验,符合题意,
∴3x=150元,
即:温馨提示牌和垃圾箱的单价各是50元和150元;
(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,
根据题意得,意,
∴
∵y为正整数,
∴y为50,51,52,共3中方案;
有三种方案:①温馨提示牌50个,垃圾箱50个,
②温馨提示牌51个,垃圾箱49个,
③温馨提示牌52个,垃圾箱48个,
设总费用为w元
W=50y+150(100﹣y)=﹣100y+15000,
∵k=-100,∴w随y的增大而减小
∴当y=52时,所需资金最少,最少是9800元.
【点睛】
此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.
19、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;
(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
【详解】
(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.
依题意,得解得
答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.
(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.
依题意,得200a+170(30-a)≤5400,
解得a≤10.
答:A种型号的电风扇最多能采购10台.
(3)依题意,有(250-200)a+(210-170)(30-a)=1400,
解得a=20.
∵a≤10,
∴在(2)的条件下超市不能实现利润为1400元的目标.
【点睛】
本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
20、(1)m≥﹣;(2)m=2.
【解析】
(1)利用判别式的意义得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,由条件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解关于m的方程,最后利用m的范围确定满足条件的m的值.
【详解】
(1)根据题意得(2m+3)2﹣4(m2+2)≥1,
解得m≥﹣;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,
因为x1x2=m2+2>1,
所以x12+x22=31+x1x2,
即(x1+x2)2﹣3x1x2﹣31=1,
所以(2m+3)2﹣3(m2+2)﹣31=1,
整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,
而m≥﹣;
所以m=2.
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,.灵活应用整体代入的方法计算.
21、(1)见解析;(1)3.5;(3)见解析; (4)3.1
【解析】
根据题意作图测量即可.
【详解】
(1)取点、画图、测量,得到数据为3.5
故答案为:3.5
(3)由数据得
(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
【点睛】
本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
22、(1)60, 90°;(2)补图见解析;(3)300;(4).
【解析】
分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.
详解:(1)60;90°.
(2)补全的条形统计图如图所示.
(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为.
(4)列表法如表所示,
男生
男生
女生
女生
男生
男生男生
男生女生
男生女生
男生
男生男生
男生女生
男生女生
女生
男生女生
男生女生
女生女生
女生
男生女生
男生女生
女生女生
所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.
点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.
23、CE的长为(4+)米
【解析】
由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
【详解】
过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6,
在Rt△ACH中,tan∠CAH=,
∴CH=AH•tan∠CAH,
∴CH=AH•tan∠CAH=6tan30°=6×=2(米),
∵DH=1.5,
∴CD=2+1.5,
在Rt△CDE中,
∵∠CED=60°,sin∠CED=,
∴CE==(4+)(米),
答:拉线CE的长为(4+)米.
考点:解直角三角形的应用-仰角俯角问题
24、(1)见解析;(2)见解析.
【解析】
(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;
(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.
【详解】
证明:(1)是的中点,
,
,
,
又,
,
,
又是的中线,
,
又,
四边形是平行四边形;
(2),
,
∴,即,
,
又,
,
又是的中线,
,
又四边形是平行四边形,
四边形是矩形.
【点睛】
本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.
2023-2024学年福建省三明市梅列区列东中学七年级(上)期中数学试卷(含解析): 这是一份2023-2024学年福建省三明市梅列区列东中学七年级(上)期中数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年福建省三明市梅列区列东中学七年级(上)月考数学试卷(10月份)(含解析): 这是一份2023-2024学年福建省三明市梅列区列东中学七年级(上)月考数学试卷(10月份)(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年福建省三明市梅列区列东中学七年级(下)期中数学试卷(含解析): 这是一份2022-2023学年福建省三明市梅列区列东中学七年级(下)期中数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。