甘肃省东乡族自治县重点名校2022年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.一元二次方程(x+2017)2=1的解为( )
A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017
2.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A.2 B.3 C.5 D.7
3.下列计算正确的是( )
A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=2
4.|﹣3|=( )
A. B.﹣ C.3 D.﹣3
5.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )
A. B. C. D.
6.下列图形中,属于中心对称图形的是( )
A. B.
C. D.
7.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是 ( )
A.m> B.m>4
C.m<4 D.<m<4
8.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是( )
A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1
9.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )
A. B. C. D.
10.下列计算正确的是( )
A.x2x3=x6 B.(m+3)2=m2+9
C.a10÷a5=a5 D.(xy2)3=xy6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.方程x-1=的解为:______.
12.因式分解:a2﹣a=_____.
13.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.
14.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.
15.化简:________.
16.将数字37000000用科学记数法表示为_____.
三、解答题(共8题,共72分)
17.(8分)化简(),并说明原代数式的值能否等于-1.
18.(8分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.
19.(8分)问题提出
(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB ∠ACB(填“>”“<”“=”);
问题探究
(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;
问题解决
(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.
20.(8分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.
21.(8分)计算:+(﹣ )﹣1+|1﹣|﹣4sin45°.
22.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
23.(12分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:
(1)本班有多少同学优秀?
(2)通过计算补全条形统计图.
(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?
24.解不等式:﹣≤1
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
利用直接开平方法解方程.
【详解】
(x+2017)2=1
x+2017=±1,
所以x1=-2018,x2=-1.
故选A.
【点睛】
本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
2、C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
中位数为:1.
故选C.
考点:众数;中位数.
3、B
【解析】
根据整式的加减乘除乘方运算法则逐一运算即可。
【详解】
A. ,故A选项错误。
B. ,故B选项正确。
C.,故C选项错误。
D. ,故D选项错误。
故答案选B.
【点睛】
本题考查整式加减乘除运算法则,只需熟记法则与公式即可。
4、C
【解析】
根据绝对值的定义解答即可.
【详解】
|-3|=3
故选:C
【点睛】
本题考查的是绝对值,理解绝对值的定义是关键.
5、B
【解析】
根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,
∴∠DCE=∠A,
∵∠ACB=90°,∠B=34°,
∴∠A=56°,
∴∠CDA=∠DCE+∠A=112°,
故选B.
【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
6、B
【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
【详解】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
故选B.
【点睛】
本题考查了轴对称与中心对称图形的概念:
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、B
【解析】
根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.
【详解】
解:∵点A(m-1,1-2m)在第四象限,
∴
解不等式①得,m>1,
解不等式②得,m>
所以,不等式组的解集是m>1,
即m的取值范围是m>1.
故选B.
【点睛】
本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、A
【解析】
根据题意可知x=-1,
平均数=(-6-1-1-1+2+1)÷6=-1,
∵数据-1出现两次最多,
∴众数为-1,
极差=1-(-6)=2,
方差= [(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
故选A.
9、B
【解析】
根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
【详解】
解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
∴AC=A′C,
∴△ACA′是等腰直角三角形,
∴∠CAA′=45°,
∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
∴∠B=∠A′B′C=65°.
故选B.
【点睛】
本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
10、C
【解析】
根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.
【详解】
x2•x3=x5,故选项A不合题意;
(m+3)2=m2+6m+9,故选项B不合题意;
a10÷a5=a5,故选项C符合题意;
(xy2)3=x3y6,故选项D不合题意.
故选:C.
【点睛】
本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
两边平方解答即可.
【详解】
原方程可化为:(x-1)2=1-x,
解得:x1=0,x2=1,
经检验,x=0不是原方程的解,
x=1是原方程的解
故答案为 .
【点睛】
此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.
12、a(a﹣1)
【解析】
直接提取公因式a,进而分解因式得出答案
【详解】
a2﹣a=a(a﹣1).
故答案为a(a﹣1).
【点睛】
此题考查公因式,难度不大
13、
【解析】
若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.
【详解】
解:∵方程有两个实数根,
∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,
解得:k≤且k≠1,
故答案为k≤且k≠1.
【点睛】
此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
14、360°.
【解析】
根据多边形的外角和等于360°解答即可.
【详解】
由多边形的外角和等于360°可知,
∠1+∠2+∠3+∠4+∠5=360°,
故答案为360°.
【点睛】
本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
15、
【解析】
根据平面向量的加法法则计算即可
【详解】
.
故答案为:
【点睛】
本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.
16、3.7×107
【解析】
根据科学记数法即可得到答案.
【详解】
数字37000000用科学记数法表示为3.7×107.
【点睛】
本题主要考查了科学记数法的基本概念,解本题的要点在于熟知科学记数法的相关知识.
三、解答题(共8题,共72分)
17、见解析
【解析】
先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.
【详解】
原式=[
=
=
=,
若原代数式的值为﹣1,则=﹣1,
解得:x=0,
因为x=0时,原式没有意义,
所以原代数式的值不能等于﹣1.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.
18、(1)答案见解析;(2)
【解析】
(1)根据三角形角平分线的定义,即可得到AD;
(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.
【详解】
解:(1)如图所示,AD即为所求;
(2)如图,过D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.
【点睛】
掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.
19、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.
【解析】
(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小
(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;
(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.
【详解】
解:(1)∠AEB>∠ACB,理由如下:
如图1,过点E作EF⊥AB于点F,
∵在矩形ABCD中,AB=2AD,E为CD中点,
∴四边形ADEF是正方形,
∴∠AEF=45°,
同理,∠BEF=45°,
∴∠AEB=90°.
而在直角△ABC中,∠ABC=90°,
∴∠ACB<90°,
∴∠AEB>∠ACB.
故答案为:>;
(2)当点P位于CD的中点时,∠APB最大,理由如下:
假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,
在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,
∵∠AFB是△EFB的外角,
∴∠AFB>∠AEB,
∵∠AFB=∠APB,
∴∠APB>∠AEB,
故点P位于CD的中点时,∠APB最大:
(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,
以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,
由题意知DP=OQ=,
∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,
BD=11.6米, AB=3米,CD=EF=1.6米,
∴OA=11.6+3﹣1.6=13米,
∴DP=米,
即小刚与大楼AD之间的距离为4米时看广告牌效果最好.
【点睛】
本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.
20、(1)且;(2),.
【解析】
(1)根据一元二次方程的定义和判别式的意义得到m≠0且≥0,然后求出两个不等式的公共部分即可;
(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.
【详解】
(1)∵
.
解得且.
(2)∵为正整数,
∴.
∴原方程为.
解得,.
【点睛】
考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
21、
【解析】
根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.
【详解】
解:+(﹣)﹣1+|1﹣|﹣1sin15°
=2﹣3+﹣1﹣1×
=2﹣3+﹣1﹣2
=﹣1.
【点睛】
此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键.
22、(1) ,y=2x﹣1;(2).
【解析】
(1)利用待定系数法即可解答;
(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标
【详解】
解:(1)把点A(4,3)代入函数得:a=3×4=12,
∴.
∵A(4,3)
∴OA=1,
∵OA=OB,
∴OB=1,
∴点B的坐标为(0,﹣1)
把B(0,﹣1),A(4,3)代入y=kx+b得:
∴y=2x﹣1.
(2)作MD⊥y轴于点D.
∵点M在一次函数y=2x﹣1上,
∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)
∵MB=MC,
∴CD=BD
∴8-(2x-1)=2x-1+1
解得:x=
∴2x﹣1= ,
∴点M的坐标为 .
【点睛】
本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
23、(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.
【解析】
(1)根据统计图即可得出结论;
(2)先计算出优秀的学生,再补齐统计图即可;
(3)根据图2的数值计算即可得出结论.
【详解】
(1)本班有学生:20÷50%=40(名),
本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名),
答:本班有4名同学优秀;
(2)成绩一般的学生有:40×30%=12(名),
成绩优秀的有4名同学,
补全的条形统计图,如图所示;
(3)3000×50%=1500(名),
答:该校3000人有1500人成绩良好.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点.
24、x≥.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
2(2﹣3x)﹣3(x﹣1)≤6,
4﹣6x﹣3x+3≤6,
﹣6x﹣3x≤6﹣4﹣3,
﹣9x≤﹣1,
x≥.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了cs30°的相反数是等内容,欢迎下载使用。
宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
福建省平和县重点名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份福建省平和县重点名校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了估计﹣2的值应该在,下列各式属于最简二次根式的有等内容,欢迎下载使用。