安徽省宣城市第二中学2022年中考押题数学预测卷含解析
展开这是一份安徽省宣城市第二中学2022年中考押题数学预测卷含解析,共19页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )
A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1
3.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )
A.60° B.50° C.40° D.30°
4.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )
A. B. C. D.
5.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )
A.10 B.8 C.5 D.3
6.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是( )
A.26°. B.44°. C.46°. D.72°
7.下列计算正确的是( )
A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
8.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是( )
A.8 B.﹣8 C.﹣12 D.12
9.△ABC在网络中的位置如图所示,则cos∠ACB的值为( )
A. B. C. D.
10.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是( )
A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.
(1)AB的长等于_____;
(2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.
12.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率m/n
0.58
0.64
0.58
0.59
0.605
0.601
13.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.
14.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
15.反比例函数y = 的图像经过点(2,4),则k的值等于__________.
16.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1. 则cos∠BEC=________.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:,其中x=-1.
18.(8分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
19.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
(1)转动转盘一次,求转出的数字是-2的概率;
(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
20.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
21.(8分)(1)解方程:x2﹣5x﹣6=0;
(2)解不等式组:.
22.(10分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.
(1)若∠DAB=50°,求∠ATC的度数;
(2)若⊙O半径为2,TC=,求AD的长.
23.(12分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
24. 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
(1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人.
(2)将条形统计图补充完整;
(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
2、C
【解析】
试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.
考点:科学记数法—表示较小的数.
3、C
【解析】
先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠1=180°﹣100°=80°,a∥c,
∴∠α=180°﹣80°﹣60°=40°.
故选:C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
4、D
【解析】
试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.
5、B
【解析】
∵摸到红球的概率为,
∴,
解得n=8,
故选B.
6、A
【解析】
先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
【详解】
解:∵图中是正五边形.
∴∠EAB=108°.
∵太阳光线互相平行,∠ABG=46°,
∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
故选A.
【点睛】
此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
7、D
【解析】
根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
【详解】
A、2a2﹣a2=a2,故A错误;
B、(ab)2=a2b2,故B错误;
C、a2与a3不是同类项,不能合并,故C错误;
D、(a2)3=a6,故D正确,
故选D.
【点睛】
本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
8、D
【解析】
根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.
【详解】
∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.
故选D.
【点睛】
本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.
9、B
【解析】
作AD⊥BC的延长线于点D,如图所示:
在Rt△ADC中,BD=AD,则AB=BD.
cos∠ACB=,
故选B.
10、C
【解析】
利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.
【详解】
选项A、标号是2是随机事件;
选项B、该卡标号小于6是必然事件;
选项C、标号为6是不可能事件;
选项D、该卡标号是偶数是随机事件;
故选C.
【点睛】
本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、 见图形
【解析】
分析:(Ⅰ)利用勾股定理计算即可;
(Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;
详解:(Ⅰ)AB的长==;
(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,
可得:EC:ED=AC:BD=3:1.
取格点G、H,连接GH交DE于F.
∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.
取格点I、J,连接IJ交BD于K.
∵BI∥DJ,∴BK:DK=BI:DJ=5:2.
连接EK交BF于P,可证BP:PF=5:3.
故答案为(Ⅰ);
(Ⅱ)由题意:连接AC、BD.
易知:AC∥BD,可得:EC:ED=AC:BD=3:1,
取格点G、H,连接GH交DE于F.
因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.
取格点I、J,连接IJ交BD于K.
因为BI∥DJ,所以BK:DK=BI:DJ=5:2,
连接EK交BF于P,可证BP:PF=5:3.
点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
12、0.1
【解析】
根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.
【详解】
解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,
则P白球=0.1.
故答案为0.1.
【点睛】
本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
13、10%
【解析】
设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.
【详解】
设平均每次上调的百分率是x,
依题意得,
解得:,(不合题意,舍去).
答:平均每次上调的百分率为10%.
故答案是:10%.
【点睛】
此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
14、
【解析】
【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.
【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),
以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,
OA2==4,点A2的坐标为(4,0),
这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)
以此类推便可求出点A2019的坐标为(22019,0),
则的长是,
故答案为:.
【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.
15、1
【解析】
解:∵点(2,4)在反比例函数的图象上,∴,即k=1.故答案为1.
点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.
16、
【解析】
分析:连接BC,则∠BCE=90°,由余弦的定义求解.
详解:连接BC,根据圆周角定理得,∠BCE=90°,
所以cos∠BEC=.
故答案为.
点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.
三、解答题(共8题,共72分)
17、解:原式=,.
【解析】
试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x的值,进行二次根式化简.
解:原式=.
当x=-1时,原式.
18、1
【解析】
先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2,
将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
故代数式a3b+2a2b2+ab3的值是1.
19、(1);(2).
【解析】
【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;
(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.
【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
∴转动转盘一次,求转出的数字是-2的概率为=;
(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
第一次 第二次
1
-2
3
1
(1,1)
(1,-2)
(1,3)
-2
(-2,1)
(-2,-2)
(-2,3)
3
(3,1)
(3,-2)
(3,3)
由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
20、(1);(2)列表见解析,.
【解析】
试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
小华
小丽
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
考点:1列表或树状图求概率;2平面直角坐标系.
21、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.
【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)先求出不等式的解集,再求出不等式组的解集即可.
【详解】
(1)x2﹣5x﹣6=0,
(x﹣6)(x+1)=0,
x﹣6=0,x+1=0,
x1=6,x2=﹣1;
(2)
∵解不等式①得:x≥﹣1,
解不等式②得:x<1,
∴不等式组的解集为﹣1≤x<1.
【点睛】
本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.
22、(2)65°;(2)2.
【解析】
试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT为⊙O的切线;
(2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.
试题解析:(2)连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;
(2)过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.
考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.
23、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
【解析】
(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
【详解】
(1)将点E代入直线解析式中,
0=﹣×4+m,
解得m=3,
∴解析式为y=﹣x+3,
∴C(0,3),
∵B(3,0),
则有,
解得,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4),
设直线BD的解析式为y=kx+b,代入点B、D,
,
解得,
∴直线BD的解析式为y=﹣2x+6,
则点M的坐标为(x,﹣2x+6),
∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
∴当x=时,S有最大值,最大值为.
(3)存在,
如图所示,
设点P的坐标为(t,0),
则点G(t,﹣t+3),H(t,﹣t2+2t+3),
∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
CG==t,
∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
而HG∥y轴,
∴HG∥CF,HG=HF,CG=CF,
∠GHC=∠CHF,
∴∠FCH=∠CHG,
∴∠FCH=∠FHC,
∴∠GCH=∠GHC,
∴CG=HG,
∴|t2﹣t|=t,
当t2﹣t=t时,
解得t1=0(舍),t2=4,
此时点P(4,0).
当t2﹣t=﹣t时,
解得t1=0(舍),t2=,
此时点P(,0).
综上,点P的坐标为(4,0)或(,0).
【点睛】
此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
24、(1)50,10;(2)见解析.(3)16.8万
【解析】
(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.
(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,
由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.
(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为24× =16.8(万).
【详解】
解:(1)本次被调查的学员共有:15÷30%=50(人),
在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),
故答案为50,10;
(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,
在被调查者中参加“4科”课外辅导的有:50×10%=5(人),
补全的条形统计图如右图所示;
(3)24× =16.8(万),
答:参与辅导科目不多于2科的学生大约有16.8人.
【点睛】
本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.
相关试卷
这是一份安徽省潜山市2022年中考押题数学预测卷含解析,共18页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
这是一份安徽省池州市重点中学2022年中考押题数学预测卷含解析,共25页。试卷主要包含了估计的值在等内容,欢迎下载使用。
这是一份安徽省合肥市46中学2022年中考押题数学预测卷含解析,共16页。试卷主要包含了答题时请按要求用笔,一次函数的图象不经过等内容,欢迎下载使用。