![安徽省滁州市琅琊区2022年中考一模数学试题含解析01](http://img-preview.51jiaoxi.com/2/3/13096196/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省滁州市琅琊区2022年中考一模数学试题含解析02](http://img-preview.51jiaoxi.com/2/3/13096196/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省滁州市琅琊区2022年中考一模数学试题含解析03](http://img-preview.51jiaoxi.com/2/3/13096196/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽省滁州市琅琊区2022年中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )
A. B. C. D.
2.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )
A.35° B.45° C.55° D.25°
3.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A.右转80° B.左转80° C.右转100° D.左转100°
4.方程的解是( ).
A. B. C. D.
5.不等式的解集在数轴上表示正确的是( )
A. B. C. D.
6.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31° B.28° C.62° D.56°
7.式子在实数范围内有意义,则x的取值范围是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
8.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )
A. B. C. D.
9.计算 的结果为( )
A.1 B.x C. D.
10.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为( )
A.2 B.3 C.4 D.6
二、填空题(共7小题,每小题3分,满分21分)
11.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)
12.分解因式:2a2﹣2=_____.
13.计算:()﹣1﹣(5﹣π)0=_____.
14.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.
15.若反比例函数的图象位于第二、四象限,则的取值范围是__.
16.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.
17.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____.
三、解答题(共7小题,满分69分)
18.(10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.
(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.
(3)在(2)的条件下,求线段DE的长度.
19.(5分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
请根据所给信息,解答以下问题: 表中 ___ ;____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
20.(8分)(1)化简:
(2)解不等式组.
21.(10分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,
)
22.(10分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线.
(1)抛物线的表达式;
(2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式.
23.(12分)楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
24.(14分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(1)条件下,四边形AODC的面积为多少?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题解析:观察二次函数图象可知:
∴一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.
故选D.
2、A
【解析】
根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.
【详解】
解:∵BC⊥AE,
∴∠BCE=90°,
∵CD∥AB,∠B=55°,
∴∠BCD=∠B=55°,
∴∠1=90°-55°=35°,
故选:A.
【点睛】
本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
3、A
【解析】
60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.
故选A.
4、B
【解析】
直接解分式方程,注意要验根.
【详解】
解:=0,
方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
解这个一元一次方程,得:x=,
经检验,x=是原方程的解.
故选B.
【点睛】
本题考查了解分式方程,解分式方程不要忘记验根.
5、B
【解析】
根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可.
【详解】
解:解:移项得,
x≤3-2,
合并得,
x≤1;
在数轴上表示应包括1和它左边的部分,如下:
;
故选:B.
【点睛】
本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示.
6、D
【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.
【详解】
解:∵四边形ABCD为矩形,
∴AD∥BC,∠ADC=90°,
∵∠FDB=90°-∠BDC=90°-62°=28°,
∵AD∥BC,
∴∠CBD=∠FDB=28°,
∵矩形ABCD沿对角线BD折叠,
∴∠FBD=∠CBD=28°,
∴∠DFE=∠FBD+∠FDB=28°+28°=56°.
故选D.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
7、B
【解析】
根据二次根式有意义的条件可得 ,再解不等式即可.
【详解】
解:由题意得:,
解得:,
故选:B.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
8、B
【解析】
根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.
【详解】
从上面看,是正方形右边有一条斜线,如图:
故选B.
【点睛】
考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.
9、A
【解析】
根据同分母分式的加减运算法则计算可得.
【详解】
原式===1,
故选:A.
【点睛】
本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.
10、B
【解析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=6,
∴DE=BC=1.
故选B.
【点睛】
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
二、填空题(共7小题,每小题3分,满分21分)
11、5π
【解析】
根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.
【详解】
∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.
故答案为:5π.
【点睛】
本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.
12、2(a+1)(a﹣1).
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解.
【详解】
解:2a2﹣2,
=2(a2﹣1),
=2(a+1)(a﹣1).
【点睛】
本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
13、1
【解析】
分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题
【详解】
解:原式=2﹣1
=1,
故答案为1.
【点睛】
此题考查负整数指数幂,0指数幂的化简,难度不大
14、(a+1)1.
【解析】
原式提取公因式,计算即可得到结果.
【详解】
原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.
【点睛】
考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.
15、k>1
【解析】
根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.
【详解】
∵反比例函数y=的图象在第二、四象限,
∴1-k<0,
∴k>1.
故答案为:k>1.
【点睛】
此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.
16、1.06×104
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10600=1.06×104,
故答案为:1.06×104
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
17、1
【解析】
连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.
【详解】
连接AC交OB于D.
四边形OABC是菱形,
.
点A在反比例函数的图象上,
的面积,
菱形OABC的面积=的面积=1.
【点睛】
本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.
三、解答题(共7小题,满分69分)
18、(1)(2)四边形是菱形.(3)
【解析】
(1)根据等边对等角及旋转的特征可得即可证得结论;
(2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;
(3)过点E作于点G,解可得AE的长,结合菱形的性质即可求得结果.
【详解】
(1)
证明:(证法一)
由旋转可知,
∴
∴又
∴即
(证法二)
由旋转可知,而
∴
∴∴
即
(2)四边形是菱形.
证明:同理
∴四边形是平行四边形.
又∴四边形是菱形
(3)过点作于点,则
在中,
.由(2)知四边形是菱形,
∴
∴
【点睛】
解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.
19、(1)0.3,45;(2);(3)
【解析】
(1)根据频数的和为样本容量,频率的和为1,可直接求解;
(2)根据频率可得到百分比,乘以360°即可;
(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.
【详解】
(1)a=0.3,b=45
(2)360°×0.3=108°
(3)列关系表格为:
由表格可知,满足题意的概率为:.
考点:1、频数分布表,2、扇形统计图,3、概率
20、(1);(2)﹣2<x<1
【解析】
(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;
(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
(1)原式=;
(2)不等式组整理得:,
则不等式组的解集为﹣2<x<1.
【点睛】
此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.
21、解:设OC=x,
在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.
在Rt△BOC中,∵∠BCO=30°,∴.
∵AB=OA﹣OB=,解得.
∴OC=5米.
答:C处到树干DO的距离CO为5米.
【解析】
解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.
【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根据AB=OA-OB=2即可得出结论.
22、(1);(2).
【解析】
(1)根据待定系数法即可求解;
(2)根据题意知,根据三角形面积公式列方程即可求解.
【详解】
(1)根据题意得:,
解得:,
抛物线的表达式为:;
(2)∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线
∴抛物线的对称轴为直线,
∵抛物线与轴交于点两点且点在点左侧,
∴的横坐标为:
∴,
令,则,
解得:,
令,则,
∴点的坐标分别为,,点的坐标为,
∴,
∵,
∴,即,
解得:或,
∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线,
∴抛物线的表达式为或.
【点睛】
本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线.
23、(39+9)米.
【解析】
过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.
【详解】
解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,
在Rt△CEF中,∵=tan∠ECF,
∴∠ECF=30°,
∴EF=CE=10米,CF=10米,
∴BH=EF=10米, HE=BF=BC+CF=(25+10)米,
在Rt△AHE中,∵∠HAE=45°,
∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.
答:楼房AB的高为(35+10)米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是本题的解题关键.
24、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1.
【解析】
试题分析:
(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;
(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;
(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.
试题解析:
(1)∵A(0,2),BC∥x轴,
∴B(﹣1,2),C(3,2),
∴AB=1,CA=3,
∴线段AB与线段CA的长度之比为;
(2)∵B是函数y=﹣(x<0)的一点,C是函数y=(x>0)的一点,
∴B(﹣,a),C(,a),
∴AB=,CA=,
∴线段AB与线段CA的长度之比为;
(3)∵=,
∴=,
又∵OA=a,CD∥y轴,
∴,
∴CD=4a,
∴四边形AODC的面积为=(a+4a)×=1.
2024年安徽省滁州市凤阳县中考数学一模试卷(含解析): 这是一份2024年安徽省滁州市凤阳县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省滁州市天长市中考一模数学试题(含解析): 这是一份2024年安徽省滁州市天长市中考一模数学试题(含解析),共25页。
2023年安徽省滁州市全椒县中考数学一模试卷(含解析): 这是一份2023年安徽省滁州市全椒县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。