


2022年四川省简阳市养马区十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列计算正确的是( )
A.(a)=a B.a+a=a
C.(3a)•(2a)=6a D.3a﹣a=3
2.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )
A. B.
C. D.
3.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )
A.选科目E的有5人
B.选科目A的扇形圆心角是120°
C.选科目D的人数占体育社团人数的
D.据此估计全校1000名八年级同学,选择科目B的有140人
4.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:
①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
5.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
A. B. C. D.
6.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A. B. C. D.
7.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
8.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是( )
A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)
C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)
9.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )
A. B. C. D.
10.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )
A.8 B.6 C.4 D.2
二、填空题(共7小题,每小题3分,满分21分)
11.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.
12.方程的根是__________.
13.已知关于x的方程有两个不相等的实数根,则m的最大整数值是 .
14.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.
15.函数y=中,自变量x的取值范围是_________.
16.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.
17.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元
三、解答题(共7小题,满分69分)
18.(10分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
19.(5分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
20.(8分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,
(1)求证:BC=2AD;
(2)若cosB=,AB=10,求CD的长.
21.(10分)如图,⊙O的半径为4,B为⊙O外一点,连结OB,且OB=6.过点B作⊙O的切线BD,切点为点D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为点C.
(1)求证:AD平分∠BAC;
(2)求AC的长.
22.(10分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.
(Ⅰ)如图①,求OD的长及的值;
(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.
①在旋转过程中,当∠BAG′=90°时,求α的大小;
②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).
23.(12分)先化简,后求值:,其中.
24.(14分)解方程:=1.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
【详解】
A.(a2)3=a2×3=a6,故本选项正确;
B.a2+a2=2a2,故本选项错误;
C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
D.3a﹣a=2a,故本选项错误.
故选A.
【点睛】
本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
2、D
【解析】
根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:
几何体的左视图是:
.
故选D.
3、B
【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,
B选项先求出A科目人数,再利用×360°判定即可,
C选项中由D的人数及总人数即可判定,
D选项利用总人数乘以样本中B人数所占比例即可判定.
【详解】
解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,
选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,
选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,
估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;
故选B.
【点睛】
本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.
4、C
【解析】
首先根据抛物线的开口方向可得到a<0,抛物线交y轴于正半轴,则c>0,而抛物线与x轴的交点中,﹣2<x1<﹣1、0<x2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断
【详解】
由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=﹣>﹣1,且c>0;
①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;
②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;
③抛物线对称轴位于y轴的左侧,则a、b同号,又c>0,故abc>0,所以③不正确;
④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确;
因此正确的结论是①②④.
故选:C.
【点睛】
本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.
5、B
【解析】
试题分析:根据题意得△=32﹣4m>0,
解得m<.
故选B.
考点:根的判别式.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
6、D
【解析】
A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.
7、D
【解析】
∵函数的图象过点A(1,m),B(4,n),
∴m==,n==3,
∴A(1,),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC•AA′=3AA′=9,
∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是.
故选D.
8、A
【解析】
首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.
【详解】
解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;
B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;
C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;
D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.
故选:A.
【点睛】
此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.
9、A
【解析】
解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.
故选A.
10、A
【解析】
试题解析:由于点A、B在反比例函数图象上关于原点对称,
则△ABC的面积=2|k|=2×4=1.
故选A.
考点:反比例函数系数k的几何意义.
二、填空题(共7小题,每小题3分,满分21分)
11、2
【解析】
把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.
【详解】
∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),
∴1= -4+2(m-1)+3,解得m=2,故答案为2.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.
12、1.
【解析】
把无理方程转化为整式方程即可解决问题.
【详解】
两边平方得到:2x﹣1=1,解得:x=1,经检验:x=1是原方程的解.
故答案为:1.
【点睛】
本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.
13、1.
【解析】
试题分析:∵关于x的方程有两个不相等的实数根,
∴.
∴m的最大整数值为1.
考点:1.一元二次方程根的判别式;2.解一元一次不等式.
14、有两个不相等的实数根.
【解析】
分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.
详解:∵a=2,b=3,c=−2,
∴
∴一元二次方程有两个不相等的实数根.
故答案为有两个不相等的实数根.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
15、x≤1且x≠﹣1
【解析】
由二次根式中被开方数为非负数且分母不等于零求解可得结论.
【详解】
根据题意,得:,解得:x≤1且x≠﹣1.
故答案为x≤1且x≠﹣1.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(1)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
16、
【解析】
仿照已知方法求出所求即可.
【详解】
令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.
故答案为:.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.
17、300
【解析】
设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.
【详解】
设成本为x元,标价为y元,依题意得,解得
故定价为300元.
【点睛】
此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.
三、解答题(共7小题,满分69分)
18、1.
【解析】
根据分式的化简法则:先算括号里的,再算乘除,最后算加减.对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义.
【详解】
解:
=
=
=
=
当x=2时,原式==1.
【点睛】
本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键.
19、(1)A、B两种奖品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【解析】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;
(2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题.
【详解】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:
解得:.
答:A种奖品的单价是10元、B种奖品的单价是15元.
(2)由题意可得:W=10m+15(100﹣m)=﹣5m+1.
∵A种奖品的数量不大于B种奖品数量的3倍,∴m≤3(100﹣m),解得:m≤75
∴当m=75时,W取得最小值,此时W=﹣5×75+1=2.
答:W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【点睛】
本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
20、(1)证明见解析;(2)CD=2.
【解析】
(1)根据三角函数的概念可知tanA=,cos∠BCD=,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.
【详解】
(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,
∴=2·,
∴BC=2AD.
(2)∵cosB==,BC=2AD,
∴=.
∵AB=10,∴AD=×10=4,BD=10-4=6,
∴BC=8,∴CD==2.
【点睛】
本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.
21、(1)证明见解析;(2)AC=.
【解析】
(1)证明:连接OD.
∵BD是⊙O的切线,
∴OD⊥BD.
∵AC⊥BD,
∴OD∥AC,
∴∠2=∠1.
∵OA=OD.
∴∠1=∠1,
∴∠1=∠2,
即AD平分∠BAC.
(2)解:∵OD∥AC,
∴△BOD∽△BAC,
∴,即.
解得.
22、(Ⅰ)(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)
【解析】
(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,
BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.
【详解】
(Ⅰ)如图1中,
∵A(0,1),
∴OA=1,
∵四边形OADC是正方形,
∴∠OAD=90°,AD=OA=1,
∴OD=AC==,
∴AB=BC=BD=BO=,
∵BD=DG,
∴BG=,
∴==.
(Ⅱ)①如图2中,
∵∠BAG′=90°,BG′=2AB,
∴sin∠AG′B==,
∴∠AG′B=30°,
∴∠ABG′=60°,
∴∠DBG′=30°,
∴旋转角α=30°,
根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,
综上所述,旋转角α=30°或150°时,∠BAG′=90°.
②如图3中,连接OF,
∵四边形BE′F′G′是正方形的边长为
∴BF′=2,
∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,
此时α=315°,F′(+,﹣)
【点睛】
本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.
23、,
【解析】
分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.
详解:原式=•﹣1
=﹣
=
当x=+1时,原式==.
点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
24、
【解析】
先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.
【详解】
原方程变形为,
方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),
解得 .
检验:把代入(2x﹣1),(2x﹣1)≠0,
∴是原方程的解,
∴原方程的.
【点睛】
本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.
2023-2024学年四川省简阳市养马区数学九上期末联考模拟试题含答案: 这是一份2023-2024学年四川省简阳市养马区数学九上期末联考模拟试题含答案,共8页。试卷主要包含了计算的结果是,函数的顶点坐标是等内容,欢迎下载使用。
四川省简阳市养马区2023-2024学年八上数学期末联考模拟试题含答案: 这是一份四川省简阳市养马区2023-2024学年八上数学期末联考模拟试题含答案,共7页。试卷主要包含了下列四个命题中,是真命题的是,4的算术平方根是,下列关于的叙述错误的是,9的平方根是等内容,欢迎下载使用。
四川省遂宁城区五校联考2022年十校联考最后数学试题含解析: 这是一份四川省遂宁城区五校联考2022年十校联考最后数学试题含解析,共18页。试卷主要包含了计算 的结果为等内容,欢迎下载使用。