![2022届浙江杭州拱墅锦绣育才中考数学适应性模拟试题含解析01](http://img-preview.51jiaoxi.com/2/3/13068971/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届浙江杭州拱墅锦绣育才中考数学适应性模拟试题含解析02](http://img-preview.51jiaoxi.com/2/3/13068971/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届浙江杭州拱墅锦绣育才中考数学适应性模拟试题含解析03](http://img-preview.51jiaoxi.com/2/3/13068971/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届浙江杭州拱墅锦绣育才中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图所示的图形为四位同学画的数轴,其中正确的是( )
A. B.
C. D.
2.如图的几何体中,主视图是中心对称图形的是( )
A. B. C. D.
3.若,则x-y的正确结果是( )
A.-1 B.1 C.-5 D.5
4.一、单选题
在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( )
A.平均数 B.众数 C.中位数 D.方差
5.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A. B. C. D.
6.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )
A. B.
C. D.
7.下列图形中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
8.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
10.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
A. B. C. D.
11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )
A.的长 B.的长 C.的长 D.的长
12.不等式组的解集在数轴上可表示为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果实数x、y满足方程组,求代数式(+2)÷.
14.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.
15.因式分解:9a2﹣12a+4=______.
16.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.
17.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.
18.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:
本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
20.(6分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.
求证:AD=AE.
21.(6分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.
22.(8分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
求证:;
求证:四边形BDFG为菱形;
若,,求四边形BDFG的周长.
23.(8分)观察下列等式:
①1×5+4=32;
②2×6+4=42;
③3×7+4=52;
…
(1)按照上面的规律,写出第⑥个等式:_____;
(2)模仿上面的方法,写出下面等式的左边:_____=502;
(3)按照上面的规律,写出第n个等式,并证明其成立.
24.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.
25.(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.
判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=,求线段CD的长.
26.(12分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.
27.(12分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据数轴三要素:原点、正方向、单位长度进行判断.
【详解】
A选项图中无原点,故错误;
B选项图中单位长度不统一,故错误;
C选项图中无正方向,故错误;
D选项图形包含数轴三要素,故正确;
故选D.
【点睛】
本题考查数轴的画法,熟记数轴三要素是解题的关键.
2、C
【解析】
解:球是主视图是圆,圆是中心对称图形,故选C.
3、A
【解析】
由题意,得
x-2=0,1-y=0,
解得x=2,y=1.
x-y=2-1=-1,
故选:A.
4、C
【解析】
由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.
【详解】
由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.
故选C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
5、D
【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
【详解】
连接CD,如图:
,CD=,AC=
∵,∴∠ADC=90°,∴tan∠BAC==.
故选D.
【点睛】
本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
6、B
【解析】
根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
【详解】
左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
故选B.
【点睛】
本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
7、B
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
解:A、是轴对称图形,也是中心对称图形,故错误;
B、是中心对称图形,不是轴对称图形,故正确;
C、是轴对称图形,也是中心对称图形,故错误;
D、是轴对称图形,也是中心对称图形,故错误.
故选B.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
9、A
【解析】
过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB
【详解】
如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,
∵两把完全相同的长方形直尺,
∴CE=CF,
∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
故选A.
【点睛】
本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.
10、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
【详解】
画树状图如下:
由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
11、B
【解析】
【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
【解答】用求根公式求得:
∵
∴
∴
AD的长就是方程的正根.
故选B.
【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
12、A
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵不等式①得:x>1,
解不等式②得:x≤2,
∴不等式组的解集为1<x≤2,
在数轴上表示为:,
故选A.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
解:原式==xy+2x+2y,方程组:,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.
点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
14、1
【解析】
利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.
【详解】
a2+b2﹣8a﹣4b+20=0,
a2﹣8a+16+b2﹣4b+4=0,
(a﹣4)2+(b﹣2)2=0
a﹣4=0,b﹣2=0,
a=4,b=2,
则a2﹣b2=16﹣4=1,
故答案为1.
【点睛】
本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.
15、(3a﹣1)1
【解析】
直接利用完全平方公式分解因式得出答案.
【详解】
9a1-11a+4=(3a-1)1.
故答案是:(3a﹣1)1.
【点睛】
考查了公式法分解因式,正确运用公式是解题关键.
16、
【解析】
列举出所有情况,看在第四象限的情况数占总情况数的多少即可.
【详解】
如图:
共有12种情况,在第三象限的情况数有2种,
故不再第三象限的共10种,
不在第三象限的概率为,
故答案为.
【点睛】
本题考查了树状图法的知识,解题的关键是列出树状图求出概率.
17、
【解析】
根据概率的概念直接求得.
【详解】
解:4÷6=.
故答案为:.
【点睛】
本题用到的知识点为:概率=所求情况数与总情况数之比.
18、1
【解析】
过点C作CH∥AB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值.
【详解】
如下图,过点C作CH∥AB交DE的延长线于点H,
则,
∵DF∥CH,
∴,
∴,
∴,
同理,
∴,
∴,解得t=1,t=(舍去),
故答案为:1.
【点睛】
本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)560;(2)54;(3)补图见解析;(4)18000人
【解析】
(1)本次调查的样本容量为224÷40%=560(人);
(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;
(3)“讲解题目”的人数是:560−84−168−224=84(人).
(4)60000×=18000(人),
答:在课堂中能“独立思考”的学生约有18000人.
20、见解析
【解析】
试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.
试题解析:∵AB=AC,点D是BC的中点,
∴AD⊥BC,∴∠ADB=90°.
∵AE⊥EB,∴∠E=∠ADB=90°.
∵AB平分∠DAE,∴∠BAD=∠BAE.
在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,
∴△ADB≌△AEB(AAS),∴AD=AE.
21、见解析
【解析】
根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.
【详解】
∵BF 平分∠ABC,
∴∠ABF=∠CBF,
∵∠BAC=90°,AD⊥BC,
∴∠ABF+∠AFB=∠CBF+∠BED=90°,
∴∠AFB=∠BED,
∵∠AEF=∠BED,
∴∠AFE=∠AEF,
∴AE=AF.
【点睛】
本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.
22、(1)证明见解析(2)证明见解析(3)1
【解析】
利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
【详解】
证明:,,
,
又为AC的中点,
,
又,
,
证明:,,
四边形BDFG为平行四边形,
又,
四边形BDFG为菱形,
解:设,则,,
在中,,
解得:,舍去,
,
菱形BDFG的周长为1.
【点睛】
本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
23、6×10+4=82 48×52+4
【解析】
(1)根据题目中的式子的变化规律可以解答本题;
(2)根据题目中的式子的变化规律可以解答本题;
(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
【详解】
解:(1)由题目中的式子可得,
第⑥个等式:6×10+4=82,
故答案为6×10+4=82;
(2)由题意可得,
48×52+4=502,
故答案为48×52+4;
(3)第n个等式是:n×(n+4)+4=(n+2)2,
证明:∵n×(n+4)+4
=n2+4n+4
=(n+2)2,
∴n×(n+4)+4=(n+2)2成立.
【点睛】
本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
24、(1)证明见解析(2)-1
【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
【详解】
(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,
即∠EAB=∠FAC,
在△ACF和△ABE中,
△ACF≌△ABE
BE=CF.
(2)∵四边形ACDE为菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE为等腰直角三角形,
∴BE=AC=,
∴BD=BE﹣DE=.
考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
25、(1) DE与⊙O相切; 理由见解析;(2).
【解析】
(1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;
(2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.
【详解】
解:(1)直线DE与⊙O相切.
理由如下:连接OD.
∵OA=OD
∴∠ODA=∠A
又∵∠BDE=∠A
∴∠ODA=∠BDE
∵AB是⊙O直径
∴∠ADB=90°
即∠ODA+∠ODB=90°
∴∠BDE+∠ODB=90°
∴∠ODE=90°
∴OD⊥DE
∴DE与⊙O相切;
(2)∵R=5,
∴AB=10,
在Rt△ABC中
∵tanA=
∴BC=AB•tanA=10×,
∴AC=,
∵∠BDC=∠ABC=90°,∠BCD=∠ACB
∴△BCD∽△ACB
∴
∴CD=.
【点睛】
本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.
26、(1)证明见解析;(2).
【解析】
试题分析:利用矩形角相等的性质证明△DAE∽△AMB.
试题解析:
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAE=∠AMB,
又∵∠DEA=∠B=90°,
∴△DAE∽△AMB.
(2)由(1)知△DAE∽△AMB,
∴DE:AD=AB:AM,
∵M是边BC的中点,BC=6,
∴BM=3,
又∵AB=4,∠B=90°,
∴AM=5,
∴DE:6=4:5,
∴DE=.
27、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)
【解析】
设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.
【详解】
设抛物线的解析式为y=ax2+bx+c,
把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,
解得,
∴抛物线的解析式为y=2x2+x﹣3,
把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,
∴C点坐标为(﹣,0)或(2,7).
【点睛】
本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.
2024年杭州拱墅中考二模数学试卷: 这是一份2024年杭州拱墅中考二模数学试卷,共5页。
2023-2024学年浙江杭州拱墅锦绣育才数学九年级第一学期期末达标测试试题含答案: 这是一份2023-2024学年浙江杭州拱墅锦绣育才数学九年级第一学期期末达标测试试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022-2023学年浙江杭州拱墅锦绣育才七年级数学第二学期期末监测模拟试题含答案: 这是一份2022-2023学年浙江杭州拱墅锦绣育才七年级数学第二学期期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若分式的值为0,则x的值是,若x>y,则下列式子错误的是等内容,欢迎下载使用。