![2022届四川省南充市营山县第三中学中考四模数学试题含解析01](http://img-preview.51jiaoxi.com/2/3/13068637/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届四川省南充市营山县第三中学中考四模数学试题含解析02](http://img-preview.51jiaoxi.com/2/3/13068637/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届四川省南充市营山县第三中学中考四模数学试题含解析03](http://img-preview.51jiaoxi.com/2/3/13068637/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届四川省南充市营山县第三中学中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )
A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm2
2.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )
A.4cm B.8cm C.(a+4)cm D.(a+8)cm
3.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是( )
A.①②③④ B.②④ C.①②③ D.①③④
4.二次函数y=3(x﹣1)2+2,下列说法正确的是( )
A.图象的开口向下
B.图象的顶点坐标是(1,2)
C.当x>1时,y随x的增大而减小
D.图象与y轴的交点坐标为(0,2)
5.下列运算正确的是( )
A.x2•x3=x6 B.x2+x2=2x4
C.(﹣2x)2=4x2 D.( a+b)2=a2+b2
6.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )
A. B. C. D.
7.函数y=中,x的取值范围是( )
A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
8.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是( )个.
A.4个 B.3个 C.2个 D.1个
9.如图所示,的顶点是正方形网格的格点,则的值为( )
A. B. C. D.
10.如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3πcm,则滑轮上的点F旋转了( )
A.60° B.90° C.120° D.45°
11.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )
A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8
12.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是( )
A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=______
14.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.
15.Rt△ABC中,AD为斜边BC上的高,若, 则 .
16.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为______.
17.如图,在△ABC中,AB=AC,∠A=36°, BD平分∠ABC交AC于点D,DE平分∠BDC交BC于点E,则= .
18.关于的方程有增根,则______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?
20.(6分)小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲产品数(件)
生产乙产品数(件)
所用时间(分钟)
10
10
350
30
20
850
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
21.(6分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).
①求此抛物线的解析式;
②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.
22.(8分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数
中位数
方差
A班
80.6
m
96.9
B班
80.8
n
153.3
根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).
23.(8分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.
24.(10分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.
(3)请估计全校共征集作品的件数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
25.(10分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?
26.(12分)如图,已知二次函数的图象经过,两点.
求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,,求的面积.
27.(12分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.
【详解】
解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,
故侧面积=πrl=π×6×4=14πcm1.
故选:A.
【点睛】
此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
2、B
【解析】
【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.
【详解】∵原正方形的周长为acm,
∴原正方形的边长为cm,
∵将它按图的方式向外等距扩1cm,
∴新正方形的边长为(+2)cm,
则新正方形的周长为4(+2)=a+8(cm),
因此需要增加的长度为a+8﹣a=8cm,
故选B.
【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.
3、A
【解析】
分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;
详解:∵∠DAE=∠BAC=90°,
∴∠DAB=∠EAC
∵AD=AE,AB=AC,
∴△DAB≌△EAC,
∴BD=CE,∠ABD=∠ECA,故①正确,
∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,
∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,
∴∠CEB=90°,即CE⊥BD,故③正确,
∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,
故选A.
点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
4、B
【解析】
由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.
【详解】
解:A、因为a=3>0,所以开口向上,错误;
B、顶点坐标是(1,2),正确;
C、当x>1时,y随x增大而增大,错误;
D、图象与y轴的交点坐标为(0,5),错误;
故选:B.
【点睛】
考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).
5、C
【解析】
根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.
【详解】
A、x2•x3=x5,故A选项错误;
B、x2+x2=2x2,故B选项错误;
C、(﹣2x)2=4x2,故C选项正确;
D、( a+b)2=a2+2ab+b2,故D选项错误,
故选C.
【点睛】
本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键
6、B
【解析】
如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
NE的长,EF的长,则可求sin∠AFG的值.
【详解】
解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.
∵四边形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵点E是CD中点
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等边三角形,且E是CD中点
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=
由折叠性质可得∠AFG=∠EFG,
∴sin∠EFG= sin∠AFG = ,故选B.
【点睛】
本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.
7、D
【解析】
试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.
故选D.
点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.
8、B
【解析】
分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a<0)得:c>−2a,由4a−2b+c=0得而0
详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(−2,0)、(x1,0),且1
把x=−2代入得:4a−2b+c=0,∴①正确;
把x=−1代入得:y=a−b+c>0,如图A点,∴②错误;
∵(−2,0)、(x1,0),且1
∴不等式的两边都乘以a(a<0)得:c>−2a,
∴2a+c>0,∴③正确;
④由4a−2b+c=0得
而0
∴2a−b+1>0,
∴④正确.
所以①③④三项正确.
故选B.
点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.
9、B
【解析】
连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.
【详解】
解:连接CD(如图所示),设小正方形的边长为,
∵BD=CD==,∠DBC=∠DCB=45°,
∴,
在中,,,则.
故选B.
【点睛】
本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.
10、B
【解析】
由弧长的计算公式可得答案.
【详解】
解:由圆弧长计算公式,将l=3π代入,
可得n =90,
故选B.
【点睛】
本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.
11、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000071的小数点向或移动7位得到7.1,
所以0.00000071用科学记数法表示为7.1×10﹣7,
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、B
【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
【点睛】
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.
【详解】
如图,连接OB、OC,以O为圆心,OC为半径画圆,
则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,
即S=πOB2-πOC2=(m2-n2)π,
OB2-OC2=m2-n2,
∵AC=m,BC=n(m>n),
∴AM=m+n,
过O作OD⊥AB于D,
∴BD=AD=AB=,CD=AC-AD=m-=,
由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,
∴m2-n2=mn,
m2-mn-n2=0,
m=,
∵m>0,n>0,
∴m=,
∴,
故答案为.
【点睛】
此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.
14、(0,).
【解析】
试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).
考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.
15、
【解析】
利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.
【详解】
如图,
∵∠CAB=90°,且AD⊥BC,
∴∠ADB=90°,
∴∠CAB=∠ADB,且∠B=∠B,
∴△CAB∽△ADB,
∴(AB:BC)1=△ADB:△CAB,
又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,
∴AB:BC=1:1.
16、1
【解析】
试题解析:∵正方体的展开图中对面不存在公共部分,
∴B与-1所在的面为对面.
∴B内的数为1.
故答案为1.
17、
【解析】
试题分析:因为△ABC中,AB=AC,∠A=36°
所以∠ABC=∠ACB=72°
因为BD平分∠ABC交AC于点D
所以∠ABD=∠CBD=36°=∠A
因为DE平分∠BDC交BC于点E
所以∠CDE=∠BDE=36°=∠A
所以AD=BD=BC
根据黄金三角形的性质知,
,,
所以
考点:黄金三角形
点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,
18、-1
【解析】
根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.
故答案为-1.
点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1平方米
【解析】
设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.
【详解】
解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,
根据题意得:﹣=11,
解得:x=500,
经检验,x=500是原方程的解,
∴1.2x=1.
答:实际平均每天施工1平方米.
【点睛】
考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.
20、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【解析】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.
【详解】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.
由题意得:,
解这个方程组得:,
答:生产一件甲产品需要15分,生产一件乙产品需要20分.
(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.
则生产甲种产品件,生产乙种产品件.
∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,
又≥60,得x≥900,
由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),
则小王该月收入最多是1644+1900=3544(元),
此时甲有=60(件),
乙有:=555(件),
答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【点睛】
考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
21、(1)①;②n≤1;(2)ac≤1,见解析.
【解析】
(1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;
②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;
(2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1. ≥c,b≥2ac,ac+1≥2ac,ac≥1;
【详解】
解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,
△=(b+1)2=1,b=﹣1,
平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),
∴4a﹣2b=1,
∴a=﹣,b=﹣1,
原抛物线:y=﹣x2+x,
②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),
∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.
由得:x2+2n=1有解,所以n≤1.
(2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),
其解析式为:y=ax2﹣bx+c过点(c,1),
∴ac2﹣bc+c=1 (c>1),
∴ac﹣b+1=1,b=ac+1,
且当x=1时,y=c,
对称轴:x=,抛物线开口向上,画草图如右所示.
由题知,当1<x<c时,y>1.
∴≥c,b≥2ac,
∴ac+1≥2ac,ac≤1;
【点睛】
本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.
22、(1)见解析;(2)m=81,n=85;(3)略.
【解析】
(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;
(2)根据中位数的定义求解即可;
(3)可以从中位数和方差的角度分析,合理即可.
【详解】
解:(1)A、B两班学生人数=5+2+3+22+8=40人,
A班70≤x<80组的人数=40-1-7-13-9=10人,
A、B两班学生数学成绩频数分布直方图如下:
(2)根据中位数的定义可得:m==81,n==85;
(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;
从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.
【点睛】
本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.
23、8+6.
【解析】
如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;
【详解】
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
∴CH=BC=6,BH==6,
在Rt△ACH中,tanA==,
∴AH=8,
∴AC==10,
【点睛】
本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
24、(1)抽样调查(2)150°(3)180件(4)
【解析】
分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;
(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;
(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.
详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
故答案为抽样调查.
(2)所调查的4个班征集到的作品数为:6÷=24件,
C班有24﹣(4+6+4)=10件,
补全条形图如图所示,
扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;
故答案为150°;
(3)∵平均每个班=6件,
∴估计全校共征集作品6×30=180件.
(4)画树状图得:
∵共有20种等可能的结果,两名学生性别相同的有8种情况,
∴恰好选取的两名学生性别相同的概率为.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=,求出P(A)..
25、(4)60;(4)作图见试题解析;(4)4.
【解析】
试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;
(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;
(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.
试题解析:(4)被调查的学生人数为:44÷40%=60(人);
(4)喜欢艺体类的学生数为:60-44-44-46=8(人),
如图所示:
全校最喜爱文学类图书的学生约有:4400×=4(人).
考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.
26、见解析
【解析】
(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;
(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.
【详解】
(1)把,代入得
,
解得.
∴这个二次函数解析式为.
(2)∵抛物线对称轴为直线,
∴的坐标为,
∴,
∴.
【点睛】
本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.
27、 (1)坡顶到地面的距离为米;移动信号发射塔的高度约为米.
【解析】
延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=,构建方程求出x即可.
【详解】
延长BC交OP于H.
∵斜坡AP的坡度为1:2.4,
∴,
设AD=5k,则PD=12k,由勾股定理,得AP=13k,
∴13k=26,
解得k=2,
∴AD=10,
∵BC⊥AC,AC∥PO,
∴BH⊥PO,
∴四边形ADHC是矩形,CH=AD=10,AC=DH,
∵∠BPD=45°,
∴PH=BH,
设BC=x,则x+10=24+DH,
∴AC=DH=x﹣14,
在Rt△ABC中,tan76°=,即≈4.1.
解得:x≈18.7,
经检验x≈18.7是原方程的解.
答:古塔BC的高度约为18.7米.
【点睛】
本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.
2023年四川省南充市顺庆区中考数学三模试卷(含解析): 这是一份2023年四川省南充市顺庆区中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省南充市中考数学一模试卷(含解析): 这是一份2023年四川省南充市中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省南充市白塔中学2022年中考数学最后一模试卷含解析: 这是一份四川省南充市白塔中学2022年中考数学最后一模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。