|试卷下载
搜索
    上传资料 赚现金
    2022届贵州省罗甸县联考中考三模数学试题含解析
    立即下载
    加入资料篮
    2022届贵州省罗甸县联考中考三模数学试题含解析01
    2022届贵州省罗甸县联考中考三模数学试题含解析02
    2022届贵州省罗甸县联考中考三模数学试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届贵州省罗甸县联考中考三模数学试题含解析

    展开
    这是一份2022届贵州省罗甸县联考中考三模数学试题含解析,共18页。试卷主要包含了估计的值在,下列运算正确的是,计算-3-1的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )

    A.(1,1) B.(2,1) C.(2,2) D.(3,1)
    2.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:
    ①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是(  )

    A.1 B.2 C.3 D.4
    3.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )

    A.点A B.点B C.点C D.点D
    4.估计的值在( )
    A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间
    5.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为

    A.4-π B.2-π
    C.4-π D.2-π
    6.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是(  )

    A. B. C. D.
    7.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )
    A.204×103 B.20.4×104 C.2.04×105 D.2.04×106
    8.下列运算正确的是(  )
    A.a6÷a3=a2 B.3a2•2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=1
    9.计算-3-1的结果是(  )
    A.2 B.-2 C.4 D.-4
    10.一个几何体的三视图如图所示,该几何体是  

    A.直三棱柱 B.长方体 C.圆锥 D.立方体
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,五边形是正五边形,若,则__________.

    12.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.
    13.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.

    14.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.
    15.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)

    16.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:

    按上规律推断,S与n的关系是________________________________.
    17.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .

    三、解答题(共7小题,满分69分)
    18.(10分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:
    ①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
    19.(5分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).
    (1)求该抛物线的函数表达式.
    (2)求直线AB关于x轴对称的直线的函数表达式.
    (3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM < PN时,求点P的横坐标的取值范围.

    20.(8分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
    在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.
    21.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
    (1)求证:四边形ACDF是平行四边形;
    (2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

    22.(10分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
    (1)求证:∠BDA=∠ECA.
    (2)若m=,n=3,∠ABC=75°,求BD的长.
    (3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
    (4)试探究线段BF,AE,EF三者之间的数量关系。

    23.(12分)解方程式:- 3 =
    24.(14分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    直接利用已知点坐标建立平面直角坐标系进而得出答案.
    【详解】
    解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:

    ∴棋子“炮”的坐标为(2,1),
    故答案为:B.
    【点睛】
    本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
    2、D
    【解析】
    如图连接OB、OD;

    ∵AB=CD,
    ∴=,故①正确
    ∵OM⊥AB,ON⊥CD,
    ∴AM=MB,CN=ND,
    ∴BM=DN,
    ∵OB=OD,
    ∴Rt△OMB≌Rt△OND,
    ∴OM=ON,故②正确,
    ∵OP=OP,
    ∴Rt△OPM≌Rt△OPN,
    ∴PM=PN,∠OPB=∠OPD,故④正确,
    ∵AM=CN,
    ∴PA=PC,故③正确,
    故选D.
    3、B
    【解析】
    试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.
    4、B
    【解析】
    ∵9<11<16,
    ∴,

    故选B.
    5、B
    【解析】
    由S阴影=S△OAE-S扇形OAF,分别求出S△OAE、S扇形OAF即可;
    【详解】
    连接OA,OD

    ∵OF⊥AD,
    ∴AC=CD=,
    在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
    则∠DOA=120°,OA=2,
    ∴Rt△OAE中,∠AOE=60°,OA=2
    ∴AE=2,S阴影=S△OAE-S扇形OAF=×2×2-.
    故选B.
    【点睛】
    考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
    6、D
    【解析】
    由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.
    【详解】
    因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.
    在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是.
    故选D.
    【点睛】
    本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.
    7、C
    【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.
    考点:科学记数法—表示较大的数.
    8、B
    【解析】
    A、根据同底数幂的除法法则计算;
    B、根据同底数幂的乘法法则计算;
    C、根据积的乘方法则进行计算;
    D、根据合并同类项法则进行计算.
    【详解】
    解:A、a6÷a3=a3,故原题错误;
    B、3a2•2a=6a3,故原题正确;
    C、(3a)2=9a2,故原题错误;
    D、2x2﹣x2=x2,故原题错误;
    故选B.
    【点睛】
    考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.
    9、D
    【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.
    故选D.
    10、A
    【解析】
    根据三视图的形状可判断几何体的形状.
    【详解】
    观察三视图可知,该几何体是直三棱柱.
    故选A.
    本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、72
    【解析】
    分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.
    详解:延长AB交于点F,

    ∵,
    ∴∠2=∠3,
    ∵五边形是正五边形,
    ∴∠ABC=108°,
    ∴∠FBC=72°,
    ∠1-∠2=∠1-∠3=∠FBC=72°
    故答案为:72°.
    点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.
    12、
    【解析】
    首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
    【详解】
    画树状图如下:

    由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,
    所以两次都摸到红球的概率是,
    故答案为.
    【点睛】
    此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
    13、1
    【解析】
    试题分析:如图,延长CF交AB于点G,

    ∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
    ∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
    又∵点D是BC中点,∴DF是△CBG的中位线.
    ∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.
    14、24
    【解析】
    先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离.
    【详解】
    y=60t﹣=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,
    当t=20-4=16时,y=576,
    600-576=24,
    即最后4s滑行的距离是24m,
    故答案为24.
    【点睛】
    本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.
    15、π.
    【解析】
    如图,连接OE,利用切线的性质得OD=3,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD-S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.
    【详解】
    连接OE,如图,

    ∵以AD为直径的半圆O与BC相切于点E,
    ∴OD=CD=3,OE⊥BC,
    ∴四边形OECD为正方形,
    ∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=32﹣,
    ∴阴影部分的面积,
    故答案为π.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.
    16、S=1n-1
    【解析】
    观察可得,n=2时,S=1;
    n=3时,S=1+(3-2)×1=12;
    n=4时,S=1+(4-2)×1=18;
    …;
    所以,S与n的关系是:S=1+(n-2)×1=1n-1.
    故答案为S=1n-1.
    【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
    17、3
    【解析】
    试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.

    考点:3.菱形的性质;3.解直角三角形;3.网格型.

    三、解答题(共7小题,满分69分)
    18、 (1) 每次下调10% (2) 第一种方案更优惠.
    【解析】
    (1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
    (2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.
    【详解】
    解:(1)设平均每次下调的百分率为x,根据题意得
    5000×(1-x)2=4050
       解得x=10%或x=1.9(舍去)
    答:平均每次下调10%.
    (2)9.8折=98%,
    100×4050×98%=396900(元)
    100×4050-100×1.5×12×2=401400(元),
    396900<401400,所以第一种方案更优惠.
    答:第一种方案更优惠.
    【点睛】
    本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.
    19、(1)(2)(3)
    【解析】
    (1)根据待定系数法,可得二次函数的解析式;
    (2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;
    (3)根据PM<PN,可得不等式,利用绝对值的性质化简解不等式,可得答案.
    【详解】
    (1)将A(﹣1,1),B(2,5)代入函数解析式,得:
    ,解得:,抛物线的解析式为y=x2﹣2x﹣3;
    (2)设AB的解析式为y=kx+b,将A(﹣1,1),B(2,5)代入函数解析式,得:
    ,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=﹣(x+1),化简,得:y=﹣x﹣1;
    (3)设M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.
    ∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.
    ∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.
    故当PM<PN时,求点P的横坐标xP的取值范围是2<xP<2.
    【点睛】
    本题考查了二次函数综合题.解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式.
    20、(1)答案见解析;(2)答案见解析.
    【解析】
    试题分析:(1)根据等腰直角三角形的性质即可解决问题.
    (2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.
    试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).

    (2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.

    考点:作图—应用与设计作图.
    21、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    22、135° m+n
    【解析】
    试题分析:
    (1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
    (2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
    (4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
    试题解析:
    (1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
    ∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
    ∴△EAC≌△BAD,
    ∴∠BDA=∠ECA;
    (2)如下图,过点E作EG⊥CB交CB的延长线于点G,
    ∴∠EGB=90°,
    ∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
    ∴∠ABE=45°,BE=2,
    ∵∠ABC=75°,
    ∴∠EBG=180°-75°-45°=60°,
    ∴BG=1,EG=,
    ∴GC=BG+BC=4,
    ∴CE=,
    ∵△EAC≌△BAD,
    ∴BD=EC=;

    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
    ∵BD=EC,
    ∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
    即当∠ABC=135°时,BD最大=;
    (4)∵△ABD≌△AEC,
    ∴∠AEC=∠ABD,
    ∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
    ∴∠ABD+∠ABE+∠CEB=90°,
    ∴∠BFE=180°-90°=90°,
    ∴EF2+BF2=BE2,
    又∵在等腰Rt△ABE中,BE2=2AE2,
    ∴2AE2=EF2+BF2.
    点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
    23、x=3
    【解析】
    先去分母,再解方程,然后验根.
    【详解】
    解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.
    【点睛】
    此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.
    24、(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.
    【解析】
    分析:(1)设进价为x元,则标价是1.5x元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x,将标价直降100元销售7辆获利是(1.5x-100)×7-7x,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到进价,进而得到标价;
    (2)设该型号自行车降价a元,利润为w元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.
    详解:(1)设进价为x元,则标价是1.5x元,由题意得:
    1.5x×0.9×8-8x=(1.5x-100)×7-7x,
    解得:x=1000,
    1.5×1000=1500(元),
    答:进价为1000元,标价为1500元;
    (2)设该型号自行车降价a元,利润为w元,由题意得:
    w=(51+×3)(1500-1000-a),
    =-(a-80)2+26460,
    ∵-<0,
    ∴当a=80时,w最大=26460,
    答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.
    点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w与a的关系式,进而求出最值.

    相关试卷

    2023年贵州省遵义市汇川区中考数学三模试卷(含解析): 这是一份2023年贵州省遵义市汇川区中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年贵州省铜仁市中考数学三模试卷(含解析): 这是一份2023年贵州省铜仁市中考数学三模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年贵州省遵义十一中中考数学三模试卷(含解析): 这是一份2023年贵州省遵义十一中中考数学三模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map