|试卷下载
搜索
    上传资料 赚现金
    2022届安徽省天长市达标名校中考三模数学试题含解析
    立即下载
    加入资料篮
    2022届安徽省天长市达标名校中考三模数学试题含解析01
    2022届安徽省天长市达标名校中考三模数学试题含解析02
    2022届安徽省天长市达标名校中考三模数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届安徽省天长市达标名校中考三模数学试题含解析

    展开
    这是一份2022届安徽省天长市达标名校中考三模数学试题含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为  
    A. B. C. D.
    2.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    3.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为(  )

    A.1 B. C.2 D.2
    4.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为(  )

    A. B. C. D.
    5.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
    鞋的尺码/cm
    23
    23.5
    24
    24.5
    25
    销售量/双
    1
    3
    3
    6
    2
    则这15双鞋的尺码组成的一组数据中,众数和中位数分别为(  )
    A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
    6.已知正比例函数的图象经过点,则此正比例函数的关系式为( ).
    A. B. C. D.
    7.下列立体图形中,主视图是三角形的是( )
    A. B. C. D.
    8.已知一个正n边形的每个内角为120°,则这个多边形的对角线有(  )
    A.5条 B.6条 C.8条 D.9条
    9.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是(  )

    A.点M B.点N C.点P D.点Q
    10.下列运算正确的是(  )
    A. B.
    C.a2•a3=a5 D.(2a)3=2a3
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.

    12.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).

    13.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是_________.

    14.已知二次函数的部分图象如图所示,则______;当x______时,y随x的增大而减小.

    15.若关于x的方程=0有增根,则m的值是______.
    16.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=cm,则EF+CF的长为 cm.

    三、解答题(共8题,共72分)
    17.(8分)解方程: +=1.
    18.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.
    求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
    19.(8分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).
    (1)求抛物线的解析式;
    (2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;
    (3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

    20.(8分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.
    (1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
    (2)求△ABC的面积(用含a的代数式表示);
    (3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

    21.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案
    方案A:该文具的销售单价高于进价且不超过30元;
    方案B:每天销售量不少于10件,且每件文具的利润至少为25元
    请比较哪种方案的最大利润更高,并说明理由
    22.(10分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.

    23.(12分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?
    24.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
    (1)第一次购书的进价是多少元?
    (2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.
    【详解】
    解:,
    ①②得:,即,
    将代入①得:,即,
    将,代入得:,
    解得:.
    故选:.
    【点睛】
    此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.
    2、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    3、B
    【解析】
    由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.
    【详解】
    解:∵点F是AC的中点,
    ∴AF=CF=AC,
    ∵将△CDE沿CE折叠到△CFE,
    ∴CD=CF=,DE=EF,
    ∴AC=,
    在Rt△ACD中,AD==1.
    ∵S△ADC=S△AEC+S△CDE,
    ∴×AD×CD=×AC×EF+×CD×DE
    ∴1×=EF+DE,
    ∴DE=EF=1,
    ∴S△AEC=××1=.
    故选B.
    【点睛】
    本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.
    4、B
    【解析】
    连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
    【详解】
    解:连接OE,如图所示:

    ∵四边形ABCD是菱形,
    ∴∠D=∠B=60°,AD=AB=4,
    ∴OA=OD=2,
    ∵OD=OE,
    ∴∠OED=∠D=60°,
    ∴∠DOE=180°﹣2×60°=60°,
    ∴ 的长==;
    故选B.
    【点睛】
    本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
    5、A
    【解析】
    【分析】根据众数和中位数的定义进行求解即可得.
    【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
    这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
    故选A.
    【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.
    6、A
    【解析】
    根据待定系数法即可求得.
    【详解】
    解:∵正比例函数y=kx的图象经过点(1,﹣3),
    ∴﹣3=k,即k=﹣3,
    ∴该正比例函数的解析式为:y=﹣3x.
    故选A.
    【点睛】
    此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    7、A
    【解析】
    考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
    【详解】
    A、圆锥的主视图是三角形,符合题意;
    B、球的主视图是圆,不符合题意;
    C、圆柱的主视图是矩形,不符合题意;
    D、正方体的主视图是正方形,不符合题意.
    故选A.
    【点睛】
    主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
    8、D
    【解析】
    多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.
    【详解】
    解:∵多边形的每一个内角都等于120°,
    ∴每个外角是60度,
    则多边形的边数为360°÷60°=6,
    则该多边形有6个顶点,
    则此多边形从一个顶点出发的对角线共有6﹣3=3条.
    ∴这个多边形的对角线有(6×3)=9条,
    故选:D.
    【点睛】
    本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.
    9、D
    【解析】
    ∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
    ∴原点在点M与N之间,
    ∴这四个数中绝对值最大的数对应的点是点Q.
    故选D.
    10、C
    【解析】
    根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.
    【详解】
    解:A、=2,此选项错误;
    B、不能进一步计算,此选项错误;
    C、a2•a3=a5,此选项正确;
    D、(2a)3=8a3,此选项计算错误;
    故选:C.
    【点睛】
    本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、15
    【解析】
    分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
    详解:∵
    当y=127时, 解得:x=43;
    当y=43时,解得:x=15;
    当y=15时, 解得 不符合条件.
    则输入的最小正整数是15.
    故答案为15.
    点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
    12、③④⑤
    【解析】
    根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题.
    【详解】
    解:由图象可得,抛物线开口向下,则a<0,抛物线与y轴交于正半轴,则c>0,对称轴在y轴右侧,则与a的符号相反,故b>0.
    ∴a<0,b>0,c>0,
    ∴abc<0,故①错误,
    当x=-1时,y=a-b+c<0,得b>a+c,故②错误,
    ∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且-1<x1<0,对称轴x=1,
    ∴x=2时的函数值与x=0的函数值相等,
    ∴x=2时,y=4a+2b+c>0,故③正确,
    ∵x=-1时,y=a-b+c<0,-=1,
    ∴2a-2b+2c<0,b=-2a,
    ∴-b-2b+2c<0,
    ∴2c<3b,故④正确,
    由图象可知,x=1时,y取得最大值,此时y=a+b+c,
    ∴a+b+c>am2+bm+c(m≠1),
    ∴a+b>am2+bm
    ∴a+b>m(am+b),故⑤正确,
    故答案为:③④⑤.
    【点睛】
    本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
    13、
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∵AE⊥BD,

    ∴△ABE∽△ADB,
    ∵E是BC的中点,



    过F作FG⊥BC于G,




    故答案为
    14、3, >1
    【解析】
    根据函数图象与x轴的交点,可求出c的值,根据图象可判断函数的增减性.
    【详解】
    解:因为二次函数的图象过点.
    所以,
    解得.
    由图象可知:时,y随x的增大而减小.
    故答案为(1). 3, (2). >1
    【点睛】
    此题考查二次函数图象的性质,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.
    15、2
    【解析】
    去分母得,m-1-x=0.
    ∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.
    16、5
    【解析】
    分析:∵AF是∠BAD的平分线,∴∠BAF=∠FAD.
    ∵ABCD中,AB∥DC,∴∠FAD =∠AEB.∴∠BAF=∠AEB.
    ∴△BAE是等腰三角形,即BE=AB=6cm.
    同理可证△CFE也是等腰三角形,且△BAE∽△CFE.
    ∵BC= AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.
    ∵BG⊥AE, BG=cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.
    ∴EF+CF=5cm.

    三、解答题(共8题,共72分)
    17、-3
    【解析】
    试题分析:解得x=-3
    经检验: x=-3是原方程的根.
    ∴原方程的根是x=-3
    考点:解一元一次方程
    点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
    18、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.
    (2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.
    【详解】
    证明:(1)∵在平行四边形ABCD中,AD∥BC,
    ∴∠AEB=∠EAD.
    ∵AE=AB,
    ∴∠ABE=∠AEB.
    ∴∠ABE=∠EAD.
    (2)∵AD∥BC,
    ∴∠ADB=∠DBE.
    ∵∠ABE=∠AEB,∠AEB=2∠ADB,
    ∴∠ABE=2∠ADB.
    ∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.
    ∴AB=AD.
    又∵四边形ABCD是平行四边形,
    ∴四边形ABCD是菱形.
    19、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).
    【解析】
    (1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
    (2)根据的坐标,易求得直线的解析式.由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;
    (3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.
    【详解】
    解:(1)把代入,
    可以求得


    (2)过点作轴分别交线段和轴于点,
    在中,令,得

    设直线的解析式为
    可求得直线的解析式为:
    ∵S四边形ABCD


    当时,有最大值
    此时四边形ABCD面积有最大值
    (3)如图所示,

    如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
    ∵C(0,-3)
    ∴设P1(x,-3)
    ∴x2-x-3=-3,解得x1=0,x2=3,
    ∴P1(3,-3);
    ②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
    ∵C(0,-3)
    ∴设P(x,3),
    ∴x2-x-3=3,
    x2-3x-8=0
    解得x=或x=,
    此时存在点P2(,3)和P3(,3),
    综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).
    【点睛】
    此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.
    20、(1)(m,2m﹣2);(2)S△ABC =﹣;(3)m的值为或10+2.
    【解析】
    分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;
    (3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.
    详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,
    ∴抛物线的顶点坐标为(m,2m﹣2),
    故答案为(m,2m﹣2);
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,

    ∵AB∥x轴,且AB=1,
    ∴点B的坐标为(m+2,1a+2m﹣2),
    ∵∠ABC=132°,
    ∴设BD=t,则CD=t,
    ∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),
    ∵点C在抛物线y=a(x﹣m)2+2m﹣2上,
    ∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,
    整理,得:at2+(1a+1)t=0,
    解得:t1=0(舍去),t2=﹣,
    ∴S△ABC=AB•CD=﹣;
    (3)∵△ABC的面积为2,
    ∴﹣=2,
    解得:a=﹣,
    ∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣2.
    分三种情况考虑:
    ①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
    整理,得:m2﹣11m+39=0,
    解得:m1=7﹣(舍去),m2=7+(舍去);
    ②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=;
    ③当m<2m﹣2,即m>2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
    整理,得:m2﹣20m+60=0,
    解得:m3=10﹣2(舍去),m1=10+2.
    综上所述:m的值为或10+2.
    点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.
    21、 (1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;
    (3) A方案利润更高.
    【解析】
    试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.
    (2)根据(1)式列出的函数关系式,运用配方法求最大值.
    (3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.
    【详解】
    解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.
    (2)∵w=-10x2+700x-10000=-10(x-35)2+2250
    ∴当x=35时,w有最大值2250,
    即销售单价为35元时,该文具每天的销售利润最大.
    (3)A方案利润高,理由如下:
    A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,
    ∴当x=30时,w有最大值,此时,最大值为2000元.
    B方案中:,解得x的取值范围为:45≤x≤49.
    ∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,
    ∴当x=45时,w有最大值,此时,最大值为1250元.
    ∵2000>1250,
    ∴A方案利润更高
    22、(1);(2)P在第二象限,Q在第三象限.
    【解析】
    试题分析:(1)求出点B坐标即可解决问题;
    (2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
    试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
    (2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
    点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    23、120
    【解析】
    设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.
    【详解】
    解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,
    由题意得,×2=,
    解得:x=120,
    经检验:x=120是原分式方程的解,且符合题意.
    答:第一批水果每件进价为120元.
    【点睛】
    本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
    24、赚了520元
    【解析】
    (1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;
    (2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.
    【详解】
    (1)设第一次购书的单价为x元,
    根据题意得:+10=,
    解得:x=5,
    经检验,x=5是原方程的解,
    答:第一次购书的进价是5元;
    (2)第一次购书为1200÷5=240(本),
    第二次购书为240+10=250(本),
    第一次赚钱为240×(7﹣5)=480(元),
    第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
    所以两次共赚钱480+40=520(元),
    答:该老板两次售书总体上是赚钱了,共赚了520元.
    【点睛】
    此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.

    相关试卷

    2023年安徽省滁州市天长市天长市实验中学中考三模数学试题(含解析): 这是一份2023年安徽省滁州市天长市天长市实验中学中考三模数学试题(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022年安徽省和县重点达标名校中考数学模试卷含解析: 这是一份2022年安徽省和县重点达标名校中考数学模试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,当函数y=等内容,欢迎下载使用。

    2022届安徽省太河县重点达标名校中考数学五模试卷含解析: 这是一份2022届安徽省太河县重点达标名校中考数学五模试卷含解析,共17页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map