2021-2022学年山西省壶关县毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列命题是假命题的是( )
A.有一个外角是120°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
2.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于( )
A.3.5 B.4 C.7 D.14
3.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是( )
A.30° B.45° C.50° D.60°
4.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是( )
A.m+n<0 B.m+n>0 C.m<n D.m>n
5.下列分式是最简分式的是( )
A. B. C. D.
6.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
7.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
A.线段 B.等边三角形 C.正方形 D.平行四边形
8.下列计算正确的是( )
A.a3﹣a2=a B.a2•a3=a6
C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6
9.最小的正整数是( )
A.0 B.1 C.﹣1 D.不存在
10.的值为( )
A. B.- C.9 D.-9
11.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m<3 B.m>3 C.m≤3 D.m≥3
12.在解方程-1=时,两边同时乘6,去分母后,正确的是( )
A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)
C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果一个正多边形的中心角等于,那么这个正多边形的边数是__________.
14.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为_____.
15.如图,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC为直径的⊙O与AC相交于点O,则阴影部分的面积为_____.
16.已知直角三角形的两边长分别为3、1.则第三边长为________.
17.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为 .
18.把多项式3x2-12因式分解的结果是_____________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).
(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.
①点A、B、C在此斜坐标系内的坐标分别为A ,B ,C .
②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 .
③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 .
(2)若ω=120°,O为坐标原点.
①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=4 ,求圆M的半径及圆心M的斜坐标.
②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 .
20.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
21.(6分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.
时间段(小时/周)
小丽抽样(人数)
小杰抽样(人数)
0~1
6
22
1~2
10
10
2~3
16
6
3~4
8
2
(1)你认为哪位学生抽取的样本不合理?请说明理由.专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.
22.(8分)计算:.
23.(8分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
24.(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
25.(10分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,.
(1)求抛物线的解析式;
(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。
26.(12分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)
27.(12分)(问题发现)
(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;
(拓展探究)
(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(解决问题)
(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
B. 等边三角形有3条对称轴,故B选项正确;
C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
D.利用SSS.可以判定三角形全等.故D选项正确;
故选C.
2、A
【解析】
根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.
【详解】
∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.
∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.
故选A.
【点睛】
本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
3、D
【解析】
根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.
则sinD=
∠D=60°
∠B=∠D=60°.
故选D.
“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
4、D
【解析】
根据反比例函数的性质,可得答案.
【详解】
∵y=−的k=-2<1,图象位于二四象限,a<1,
∴P(a,m)在第二象限,
∴m>1;
∵b>1,
∴Q(b,n)在第四象限,
∴n<1.
∴n<1<m,
即m>n,
故D正确;
故选D.
【点睛】
本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.
5、C
【解析】
解:A.,故本选项错误;
B.,故本选项错误;
C.,不能约分,故本选项正确;
D.,故本选项错误.
故选C.
点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.
6、C
【解析】
分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
详解:∵AB=AC,AD⊥BC,∴BD=CD.
又∵∠BAC=90°,∴BD=AD=CD.
又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
∴∠DBF=∠DAE=90°﹣62°=28°.
故选C.
点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
7、B
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、D
【解析】
各项计算得到结果,即可作出判断.
解:A、原式不能合并,不符合题意;
B、原式=a5,不符合题意;
C、原式=a2﹣2ab+b2,不符合题意;
D、原式=﹣a6,符合题意,
故选D
9、B
【解析】
根据最小的正整数是1解答即可.
【详解】
最小的正整数是1.
故选B.
【点睛】
本题考查了有理数的认识,关键是根据最小的正整数是1解答.
10、A
【解析】
【分析】根据绝对值的意义进行求解即可得.
【详解】表示的是的绝对值,
数轴上表示的点到原点的距离是,即的绝对值是,
所以的值为 ,
故选A.
【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.
11、A
【解析】
分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.
详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
∴△=(-2)2-4m>0,
∴m<3,
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
12、D
【解析】
解: ,∴3(x﹣1)﹣6=2(3x+1),故选D.
点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12.
【解析】
根据正n边形的中心角的度数为进行计算即可得到答案.
【详解】
解:根据正n边形的中心角的度数为,则n=360÷30=12,故这个正多边形的边数为12,
故答案为:12.
【点睛】
本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.
14、
【解析】
设AB=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.
【详解】
∵△BCD∽△BAC,
∴=,
设AB=x,
∴22=x,
∵x>0,
∴x=4,
∴AC=AD=4-1=3,
∵△BCD∽△BAC,
∴==,
∴CD=.
故答案为
【点睛】
本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC解答.
15、6﹣π
【解析】
连接、,根据阴影部分的面积计算.
【详解】
连接、,
,,
,,
为的直径,
,
,
,
,
,
阴影部分的面积
.
故答案为.
【点睛】
本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式是解题的关键.
16、4或
【解析】
试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;
②长为3、3的边都是直角边时:第三边的长为:;
∴第三边的长为:或4.
考点:3.勾股定理;4.分类思想的应用.
17、.
【解析】
试题分析:设正方形的边长为y,EC=x,
由题意知,AE2=AB2+BE2,
即(x+y)2=y2+(y-x)2,
由于y≠0,
化简得y=4x,
∴sin∠EAB=.
考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义
18、3(x+2)(x-2)
【解析】
因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x2-12因式分解先提公因式3,再利用平方差公式因式分解.
【详解】
3x2-12=3()=3.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)①(2,0),(1,),(﹣1,);②y=x;③ y=x,y=﹣x+;(2)①半径为4,M(,);②﹣1<r<+1.
【解析】
(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;
(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.
【详解】
(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,
由题意OC=CD=1,OA=BC=2,
∴BD=OE=1,OD=CF=BE=,
∴A(2,0),B(1,),C(﹣1,),
故答案为(2,0),(1,),(﹣1,);
②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,
∵OD∥BE,OD∥PM,
∴BE∥PM,
∴=,
∴,
∴y=x;
③如图2﹣3中,作QM∥OA交OD于M,
则有,
∴,
∴y=﹣x+,
故答案为y=x,y=﹣x+;
(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,
∵ω=120°,OM⊥y轴,
∴∠MOA=30°,
∵MF⊥OA,OA=4,
∴OF=FA=2,
∴FM=2,OM=2FM=4,
∵MN∥y轴,
∴MN⊥OM,
∴MN=,ON=2MN=,
∴M(,);
②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.
∵MK∥x轴,ω=120°,
∴∠MKO=60°,
∵MK=OK=2,
∴△MKO是等边三角形,
∴MN=,
当FN=1时,MF=﹣1,
当EN=1时,ME=+1,
观察图象可知当⊙M的半径r的取值范围为﹣1<r<+1.
故答案为:﹣1<r<+1.
【点睛】
本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.
20、(1);(2)
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
【详解】
(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
∴小明选择去白鹿原游玩的概率=;
(2)画树状图分析如下:
两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
所以小明和小华都选择去秦岭国家植物园游玩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
21、(1)小丽;(2)80
【解析】
解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有随机性与代表性.
(2).
答:该校全体初二学生中有80名同学应适当减少上网的时间.
22、
【解析】
直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.
【详解】
原式=9﹣2+1﹣2=.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
23、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
【解析】
试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<1.
考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
24、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.
【解析】
(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;
(1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
【详解】
(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:
,解得.
答:甲种商品的销售单价900元,乙种商品的销售单价600元;
(1)设销售甲种商品a万件,依题意有:
900a+600(8﹣a)≥5400,解得:a≥1.
答:至少销售甲种商品1万件.
【点睛】
本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
25、(1);(2) (3,-4) 或(5,4)或(-5,4)
【解析】
(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;
(2)先画出存在的点,然后通过平移和计算确定坐标;
【详解】
解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)
设抛物线的解析式为y=ax2+bx+c
则有: 解得
所以函数解析式为:
(2)存在,(3,-4) 或(5,4)或(-5,4)
理由如下:如图:
P1相当于C点向右平移了5个单位长度,则坐标为(5,4);
P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);
设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,
则有A P3=BC, B P3=AC
∴ 即 (舍去)
P3坐标为(3,-4)
【点睛】
本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.
26、凉亭P到公路l的距离为273.2m.
【解析】
分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.
【详解】
详解:作PD⊥AB于D.
设BD=x,则AD=x+1.
∵∠EAP=60°,
∴∠PAB=90°﹣60°=30°.
在Rt△BPD中,
∵∠FBP=45°,
∴∠PBD=∠BPD=45°,
∴PD=DB=x.
在Rt△APD中,
∵∠PAB=30°,
∴PD=tan30°•AD,
即DB=PD=tan30°•AD=x=(1+x),
解得:x≈273.2,
∴PD=273.2.
答:凉亭P到公路l的距离为273.2m.
【点睛】
此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.
27、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8
【解析】
(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;
(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.
【详解】
(1)∵AB=AD,CB=CD,
∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
∴AC垂直平分BD,
故答案为AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC的中点,
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四边形AMFN是矩形;
(3)BD′的平方为16+8或16﹣8.
分两种情况:
①以点A为旋转中心将正方形ABCD逆时针旋转60°,
如图所示:过D'作D'E⊥AB,交BA的延长线于E,
由旋转可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=,AE=,
∴BE=2+,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
②以点A为旋转中心将正方形ABCD顺时针旋转60°,
如图所示:过B作BF⊥AD'于F,
旋转可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=,AF=,
∴D'F=2﹣,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
综上所述,BD′平方的长度为16+8或16﹣8.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.
山西省汾西县2022年毕业升学考试模拟卷数学卷含解析: 这是一份山西省汾西县2022年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图图形中是中心对称图形的是,下列运算结果正确的是等内容,欢迎下载使用。
2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了一元二次方程的根的情况是,八边形的内角和为,有以下图形等内容,欢迎下载使用。
2021-2022学年山西省运城市新绛县市级名校毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年山西省运城市新绛县市级名校毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。