2021-2022学年山东省邹城市达标名校十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列图形中一定是相似形的是( )
A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形
2.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )
A.56×108 B.5.6×108 C.5.6×109 D.0.56×1010
3.的相反数是 ( )
A. B. C.3 D.-3
4.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
A.2个 B.3个 C.4个 D.5个
5.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
6.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为
A.6 B. C. D.3
7.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是( )
A. B. C. D.
8.化简:-,结果正确的是( )
A.1 B. C. D.
9.如果零上2℃记作+2℃,那么零下3℃记作( )
A.-3℃ B.-2℃ C.+3℃ D.+2℃
10.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为
A.80° B.50° C.30° D.20°
11.在解方程-1=时,两边同时乘6,去分母后,正确的是( )
A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)
C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)
12.在实数,有理数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.抛物线向右平移1个单位,再向下平移2个单位所得抛物线是__________.
14.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.
15.将2.05×10﹣3用小数表示为__.
16.规定一种新运算“*”:a*b=a-b,则方程x*2=1*x的解为________.
17.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是 ;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 .
18.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(1)问题探究:
如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
(3)应用拓展:
如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.
20.(6分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.
21.(6分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?
22.(8分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.
(1)求证:∠ACD=∠B;
(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.
23.(8分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?
24.(10分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,
商品名称
甲
乙
进价(元/件)
80
100
售价(元/件)
160
240
设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.
(1)求y与x的函数关系式;
(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.
25.(10分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
26.(12分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.
(1)求∠AEC的度数;
(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.
27.(12分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
(1)求线段DE的长度;
(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
【详解】
解:∵等边三角形的对应角相等,对应边的比相等,
∴两个等边三角形一定是相似形,
又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
故选:B.
【点睛】
本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
2、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.
【详解】
56亿=56×108=5.6×101,
故选C.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
3、B
【解析】
先求的绝对值,再求其相反数:
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此的相反数是.故选B.
4、C
【解析】
分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.
【详解】
如图,
分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.
∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.
故选C.
【点睛】
本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.
5、C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2 050 000将小数点向左移6位得到2.05,
所以2 050 000用科学记数法表示为:20.5×106,
故选C.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、D
【解析】
解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,
故选D.
【点睛】
本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.
7、B
【解析】
连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
【详解】
解,连结OB,
∵、是的切线,
∴,,则,
∵四边形APBO的内角和为360°,即,
∴,
又∵,,
∴,
∵,
∴,
∵,
∴,
故选:B.
【点睛】
本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
8、B
【解析】
先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
【详解】
【点睛】
本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
9、A
【解析】
一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
故选A.
10、D
【解析】
试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.
考点:平行线的性质;三角形的外角的性质.
11、D
【解析】
解: ,∴3(x﹣1)﹣6=2(3x+1),故选D.
点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.
12、D
【解析】
试题分析:根据有理数是有限小数或无限循环小数,可得答案:
是有理数,故选D.
考点:有理数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(或)
【解析】
将抛物线化为顶点式,再按照“左加右减,上加下减”的规律平移即可.
【详解】
解:化为顶点式得:,
∴向右平移1个单位,再向下平移2个单位得:
,
化为一般式得:,
故答案为:(或).
【点睛】
此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力.
14、
【解析】
设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.
【详解】
∵甲平均每分钟打x个字,
∴乙平均每分钟打(x+20)个字,
根据题意得:,
故答案为.
【点睛】
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
15、0.1
【解析】试题解析:原式=2.05×10-3=0.1.
【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向右移几位;n<0时,n是几,小数点就向左移几位.
16、
【解析】
根据题中的新定义化简所求方程,求出方程的解即可.
【详解】
根据题意得:x-×2=×1-,
x=,
解得:x=,
故答案为x=.
【点睛】
此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.
17、(1)-2;(2)
【解析】
(1)设点P的坐标为(m,n),则点Q的坐标为(m−1,n+2),
依题意得:
,
解得:k=−2.
故答案为−2.
(2)∵BO⊥x轴,CE⊥x轴,
∴BO∥CE,
∴△AOB∽△AEC.
又∵,
∴
令一次函数y=−2x+b中x=0,则y=b,
∴BO=b;
令一次函数y=−2x+b中y=0,则0=−2x+b,
解得:x=,即AO=.
∵△AOB∽△AEC,且,
∴,
∴AE=,AO=,CE=BO=b,OE=AE−AO=.
∵OE⋅CE=|−4|=4,即=4,
解得:b=,或b=− (舍去).
故答案为.
18、1.
【解析】
根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.
【详解】
∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.
【点睛】
考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.
【解析】
(1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.
(1)点B是的重心,得到设 则
根据勾股定理可得即可求出它们的比值.
(3)分两种情况进行讨论:①当时和②当时.
【详解】
(1)△ABC是“等高底”三角形;
理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,
∵∠ACB=30°,AC=6,
∴
∴AD=BC=3,
即△ABC是“等高底”三角形;
(1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,
∴
∵△ABC关于BC所在直线的对称图形是 ,
∴∠ADC=90°,
∵点B是的重心,
∴
设 则
由勾股定理得
∴
(3)①当时,
Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,
∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.
∴
∴BE=1,即EC=4,
∴
∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
∴∠DCF=45°,
设
∵l1∥l1,
∴
∴ 即
∴
∴
Ⅱ.如图4,此时△ABC等腰直角三角形,
∵△ABC绕点C按顺时针方向旋转45°得到,
∴是等腰直角三角形,
∴
②当时,
Ⅰ.如图5,此时△ABC是等腰直角三角形,
∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
∴
∴
Ⅱ.如图6,作于E,则
∴
∴
∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,
∴∥l1,即直线与l1无交点,
综上所述,CD的值为
【点睛】
属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.
20、
【解析】
过点B作BD⊥AC,在△ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.
【详解】
解:
过点B作BD⊥AC,垂足为点D,
在Rt△ABD中,,
∵,AB=5,
∴AD=AB·cosA=5×=3,
∴BD=4,
∵AC=5,
∴DC=2,
∴BC=.
【点睛】
本题考查了锐角的三角函数和勾股定理的运用.
21、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆
【解析】
分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;
(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.
详解:(1)设本次试点投放的A型车x辆、B型车y辆,
根据题意,得:,
解得:,
答:本次试点投放的A型车60辆、B型车40辆;
(2)由(1)知A、B型车辆的数量比为3:2,
设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,
根据题意,得:3a×400+2a×320≥1840000,
解得:a≥1000,
即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,
则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.
点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.
22、(1)详见解析;(2)∠CEF=45°.
【解析】
试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出∠DCO=∠ACB=90°,然后根据等角的余角相等即可得出结论;
(2)根据三角形的外角的性质证明∠CEF=∠CFE即可求解.
试题解析:
(1)证明:如图1中,连接OC.
∵OA=OC,∴∠1=∠2,
∵CD是⊙O切线,∴OC⊥CD,
∴∠DCO=90°,∴∠3+∠2=90°,
∵AB是直径,∴∠1+∠B=90°,
∴∠3=∠B.
(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,
∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,
∵∠ECF=90°,
∴∠CEF=∠CFE=45°.
23、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.
【解析】
【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.
【详解】(1)设A种奖品每件x元,B种奖品每件y元,
根据题意得:,
解得:,
答:A种奖品每件16元,B种奖品每件4元;
(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,
根据题意得:16a+4(100﹣a)≤900,
解得:a≤,
∵a为整数,
∴a≤41,
答:A种奖品最多购买41件.
【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.
24、(1)y=﹣60x+28000;(2)若售完这些商品,则商场可获得的最大利润是22000元;(3)商场应购进甲商品120件,乙商品80件,获利最大
【解析】分析:(1)根据总利润=(甲的售价-甲的进价)×购进甲的数量+(乙的售价-乙的进价)×购进乙的数量代入列关系式,并化简即可;(2)根据总成本≤18000列不等式即可求出x的取值,再根据函数的增减性确定其最值问题;(3)把50<a<70分三种情况讨论:一次项x的系数大于0、等于0、小于0,根据函数的增减性得出结论.
详解:
(1)根据题意得:y=(160﹣80)x+(240﹣100)(200﹣x),
=﹣60x+28000,
则y与x的函数关系式为:y=﹣60x+28000;
(2)80x+100(200﹣x)≤18000,
解得:x≥100,
∴至少要购进100件甲商品,
y=﹣60x+28000,
∵﹣60<0,
∴y随x的增大而减小,
∴当x=100时,y有最大值,
y大=﹣60×100+28000=22000,
∴若售完这些商品,则商场可获得的最大利润是22000元;
(3)y=(160﹣80+a)x+(240﹣100)(200﹣x) (100≤x≤120),
y=(a﹣60)x+28000,
①当50<a<60时,a﹣60<0,y随x的增大而减小,
∴当x=100时,y有最大利润,
即商场应购进甲商品100件,乙商品100件,获利最大,
②当a=60时,a﹣60=0,y=28000,
即商场应购进甲商品的数量满足100≤x≤120的整数件时,获利最大,
③当60<a<70时,a﹣60>0,y随x的增大而增大,
∴当x=120时,y有最大利润,
即商场应购进甲商品120件,乙商品80件,获利最大.
点睛:本题是一次函数和一元一次不等式的综合应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润×数量;认真读题,弄清题中的每一个条件;对于最值问题,可利用一次函数的增减性来解决:形如y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
25、(1)详见解析;(2)tan∠ADP=.
【解析】
(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;
(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.
【详解】
(1)证明:∵AE垂直平分BF,
∴AB=AF,
∴∠BAE=∠FAE,
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠FAE=∠AEB,
∴∠AEB=∠BAE,
∴AB=BE,
∴AF=BE.
∵AF∥BC,
∴四边形ABEF是平行四边形.
∵AB=BE,
∴四边形ABEF是菱形;
(2)解:作PH⊥AD于H,
∵四边形ABEF是菱形,∠ABC=60°,AB=4,
∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
∴AP=AB=2,
∴PH=,DH=5,
∴tan∠ADP==.
【点睛】
本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.
26、(1)90°;(1)AE1+EB1=AC1,证明见解析.
【解析】
(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;
(1)根据勾股定理解答.
【详解】
解:(1)∵点D是BC边的中点,DE⊥BC,
∴DE是线段BC的垂直平分线,
∴EB=EC,
∴∠ECB=∠B=45°,
∴∠AEC=∠ECB+∠B=90°;
(1)AE1+EB1=AC1.
∵∠AEC=90°,
∴AE1+EC1=AC1,
∵EB=EC,
∴AE1+EB1=AC1.
【点睛】
本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
27、 (1)2 ;(2) ;(3)见解析.
【解析】
分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -m²+m+,根据解析式即可求得,△MPF面积的最大值;
(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.
本题解析:(1)对于抛物线y=﹣x2+x+,
令x=0,得y=,即C(0,),D(2,),
∴DH=,
令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
∵AE⊥AC,EH⊥AH,
∴△ACO∽△EAH,
∴=,即=,
解得:EH=,
则DE=2;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),
连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,
直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,
联立得:F (0,﹣),P(2,),
过点M作y轴的平行线交FH于点Q,
设点M(m,﹣m2+m+),则Q(m, m﹣),(0<m<2);
∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,
∵对称轴为:直线m=<2,开口向下,
∴m=时,△MPF面积有最大值: ;
(3)由(2)可知C(0,),F(0,),P(2,),
∴CF=,CP==,
∵OC=,OA=1,
∴∠OCA=30°,
∵FC=FG,
∴∠OCA=∠FGA=30°,
∴∠CFP=60°,
∴△CFP为等边三角形,边长为,
翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,
1)当K F′=KF″时,如图3,
点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),
∴OK=3;
2)当F′F″=F′K时,如图4,
∴F′F″=F′K=4,
∵FP的解析式为:y=x﹣,
∴在平移过程中,F′K与x轴的夹角为30°,
∵∠OAF=30°,
∴F′K=F′A
∴AK=4
∴OK=4﹣1或者4+1;
3)当F″F′=F″K时,如图5,
∵在平移过程中,F″F′始终与x轴夹角为60°,
∵∠OAF=30°,
∴∠AF′F″=90°,
∵F″F′=F″K=4,
∴AF″=8,
∴AK=12,
∴OK=1,
综上所述:OK=3,4﹣1,4+1或者1.
点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.
山西省(运城地区)达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份山西省(运城地区)达标名校2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,﹣2018的相反数是,下列运算正确的是等内容,欢迎下载使用。
山东省滕州市达标名校2022年十校联考最后数学试题含解析: 这是一份山东省滕州市达标名校2022年十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,化简的结果是等内容,欢迎下载使用。
达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份达标名校2021-2022学年十校联考最后数学试题含解析,共22页。试卷主要包含了在数轴上表示不等式2等内容,欢迎下载使用。