年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年黑龙江省齐齐哈尔市五县重点达标名校中考联考数学试卷含解析

    2021-2022学年黑龙江省齐齐哈尔市五县重点达标名校中考联考数学试卷含解析第1页
    2021-2022学年黑龙江省齐齐哈尔市五县重点达标名校中考联考数学试卷含解析第2页
    2021-2022学年黑龙江省齐齐哈尔市五县重点达标名校中考联考数学试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年黑龙江省齐齐哈尔市五县重点达标名校中考联考数学试卷含解析

    展开

    这是一份2021-2022学年黑龙江省齐齐哈尔市五县重点达标名校中考联考数学试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
    Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
    如图是按上述要求排乱顺序的尺规作图:

    则正确的配对是(  )
    A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
    C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
    2.下列运算正确的是( )
    A. B.
    C. D.
    3.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为(  )kg.
    A.180 B.200 C.240 D.300
    4.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为

    A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
    5.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
    A. B.x(x+1)=1980
    C.2x(x+1)=1980 D.x(x-1)=1980
    6.下列运算正确的是(  )
    A.a6÷a2=a3 B.(2a+b)(2a﹣b)=4a2﹣b2 C.(﹣a)2•a3=a6 D.5a+2b=7ab
    7.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=或t=.其中正确的结论有(  )

    A.①②③④ B.①②④
    C.①② D.②③④
    8.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为(  )

    A.1:2 B.1:3 C.1:4 D.1:1
    9.关于反比例函数y=,下列说法中错误的是(  )
    A.它的图象是双曲线
    B.它的图象在第一、三象限
    C.y的值随x的值增大而减小
    D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
    10.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为(  )
    A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或6
    11.下列运算正确的是(  )
    A.5a+2b=5(a+b) B.a+a2=a3
    C.2a3•3a2=6a5 D.(a3)2=a5
    12.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为(  )

    A.16cm B.20cm C.24cm D.28cm
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若a2+3=2b,则a3﹣2ab+3a=_____.
    14.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为________.

    15.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为_________________.

    16.比较大小:4 (填入“>”或“<”号)
    17.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).

    18.计算:(π﹣3)0﹣2-1=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)观察下列等式:
    第1个等式:;
    第2个等式:;
    第3个等式:;
    第4个等式:;

    请解答下列问题:按以上规律列出第5个等式:a5=  =  ;用含有n的代数式表示第n个等式:an=  =  (n为正整数);求a1+a2+a3+a4+…+a100的值.
    20.(6分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,
    已知A(2,5).求:b和k的值;△OAB的面积.

    21.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
    22.(8分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高
    (1)△ACD与△ABC相似吗?为什么?
    (2)AC2=AB•AD 成立吗?为什么?

    23.(8分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?
    24.(10分)计算:+-2〡+6tan30°
    25.(10分)关于x的一元二次方程ax2+bx+1=1.
    (1)当b=a+2时,利用根的判别式判断方程根的情况;
    (2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
    26.(12分)某公司10名销售员,去年完成的销售额情况如表:
    销售额(单位:万元)
    3
    4
    5
    6
    7
    8
    10
    销售员人数(单位:人)
    1
    3
    2
    1
    1
    1
    1
    (1)求销售额的平均数、众数、中位数;
    (2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
    27.(12分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
    (1)求证:∠BDA=∠ECA.
    (2)若m=,n=3,∠ABC=75°,求BD的长.
    (3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
    (4)试探究线段BF,AE,EF三者之间的数量关系。




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
    【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
    Ⅱ、作线段的垂直平分线,观察可知图③符合;
    Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
    Ⅳ、作角的平分线,观察可知图①符合,
    所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
    故选D.
    【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
    2、D
    【解析】
    【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
    【详解】A. ,故A选项错误,不符合题意;
    B. ,故B选项错误,不符合题意;
    C. ,故C选项错误,不符合题意;
    D. ,正确,符合题意,
    故选D.
    【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.
    3、B
    【解析】
    根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
    【详解】
    解:设小李所进甜瓜的数量为,根据题意得:

    解得:,
    经检验是原方程的解.
    答:小李所进甜瓜的数量为200kg.
    故选:B.
    【点睛】
    本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
    4、B
    【解析】
    试题分析:根据作图方法可得点P在第二象限角平分线上,
    则P点横纵坐标的和为0,即2a+b+1=0,
    ∴2a+b=﹣1.故选B.
    5、D
    【解析】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.
    【详解】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,
    ∴全班共送:(x﹣1)x=1980,
    故选D.
    【点睛】
    此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
    6、B
    【解析】
    A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;
    B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;
    C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;
    D选项:两项不是同类项,故不能进行合并.
    【详解】
    A选项:a6÷a2=a4,故本选项错误;
    B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;
    C选项:(-a)2•a3=a5,故本选项错误;
    D选项:5a与2b不是同类项,不能合并,故本选项错误;
    故选:B.
    【点睛】
    考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.
    7、C
    【解析】
    观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.
    【详解】
    由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,
    ∴①②都正确;
    设小带车离开A城的距离y与t的关系式为y小带=kt,
    把(5,300)代入可求得k=60,
    ∴y小带=60t,
    设小路车离开A城的距离y与t的关系式为y小路=mt+n,
    把(1,0)和(4,300)代入可得
    解得
    ∴y小路=100t-100,
    令y小带=y小路,可得60t=100t-100,
    解得t=2.5,
    即小带和小路两直线的交点横坐标为t=2.5,
    此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,
    ∴③不正确;
    令|y小带-y小路|=50,
    可得|60t-100t+100|=50,即|100-40t|=50,
    当100-40t=50时,
    可解得t=,
    当100-40t=-50时,
    可解得t=,
    又当t=时,y小带=50,此时小路还没出发,
    当t=时,小路到达B城,y小带=250.
    综上可知当t的值为或或或时,两车相距50 km,
    ∴④不正确.
    故选C.
    【点睛】
    本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.
    8、B
    【解析】
    根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.
    【详解】
    解:∵D、E分别为△ABC的边AB、AC上的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,DE=BC,
    ∴△ADE∽△ABC,
    ∴△ADE的面积:△ABC的面积==1:4,
    ∴△ADE的面积:四边形BCED的面积=1:3;
    故选B.
    【点睛】
    本题考查三角形中位线定理及相似三角形的判定与性质.
    9、C
    【解析】
    根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
    【详解】
    A.反比例函数的图像是双曲线,正确;
    B.k=2>0,图象位于一、三象限,正确;
    C.在每一象限内,y的值随x的增大而减小,错误;
    D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
    故选C.
    【点睛】
    本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
    10、C
    【解析】
    由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 >2或t<1两种情况进行求解即可.
    【详解】
    解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.
    故选择C.
    【点睛】
    本题考查了平面直角坐标系的内容,理解题意是解题关键.
    11、C
    【解析】
    直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.
    【详解】
    A、5a+2b,无法计算,故此选项错误;
    B、a+a2,无法计算,故此选项错误;
    C、2a3•3a2=6a5,故此选项正确;
    D、(a3)2=a6,故此选项错误.
    故选C.
    【点睛】
    此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.
    12、C
    【解析】
    首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.
    【详解】
    ∵长方形ABCD中,AB∥CD,
    ∴∠BAC=∠DCA,
    又∵∠BAC=∠EAC,
    ∴∠EAC=∠DCA,
    ∴FC=AF=25cm,
    又∵长方形ABCD中,DC=AB=32cm,
    ∴DF=DC-FC=32-25=7cm,
    在直角△ADF中,AD==24(cm).
    故选C.
    【点睛】
    本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.
    【详解】
    解:∵a2+3=2b,
    ∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,
    故答案为1.
    【点睛】
    本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.
    14、
    【解析】
    作出D关于AB的对称点D’,则PC+PD的最小值就是CD’的长度,在△COD'中根据边角关系即可求解.
    【详解】

    解:如图:作出D关于AB的对称点D’,连接OC,OD',CD'.
    又∵点C在⊙O上,∠CAB=30°,D为弧BC的中点,即,
    ∴∠BAD'=∠CAB=15°.
    ∴∠CAD'=45°.
    ∴∠COD'=90°.则△COD'是等腰直角三角形.
    ∵OC=OD'=AB=1,

    故答案为:.
    【点睛】
    本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.
    15、-4<x<1
    【解析】
    将P(1,1)代入解析式y1=mx,先求出m的值为,将Q点纵坐标y=1代入解析式y=x,求出y1=mx的横坐标x=-4,即可由图直接求出不等式kx+b>mx>-1的解集为y1>y1>-1时,x的取值范围为-4<x<1.
    故答案为-4<x<1.
    点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x轴的交点坐标是解题的关键.
    16、>
    【解析】
    试题解析:∵<
    ∴4<.
    考点:实数的大小比较.
    【详解】
    请在此输入详解!
    17、(a+b)2=a2+2ab+b2
    【解析】
    完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.
    【详解】
    解:

    ,




    【点睛】
    此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.
    18、
    【解析】
    分别利用零指数幂a0=1(a≠0),负指数幂a-p=(a≠0)化简计算即可.
    【详解】
    解:(π﹣3)0﹣2-1=1-=.
    故答案为:.
    【点睛】
    本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)(2)(3)
    【解析】
    (1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.
    (3)运用变化规律计算
    【详解】
    解:(1)a5=;
    (2)an=;
    (3)a1+a2+a3+a4+…+a100
    .
    20、(1)b=3,k=10;(2)S△AOB=.
    【解析】
    (1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;
    (2)过A作AD⊥x轴于D,BE⊥x轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.
    解:()把代入.∴∴.
    把代入,∴,
    ∴.
    ()∵,.
    ∴时,,
    ∴,.∴.
    又∵,
    ∴ .
    21、1
    【解析】解:


    取时,原式.
    22、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.
    【解析】
    (1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;
    (2)根据相似三角形的性质得出比例式,再进行变形即可.
    【详解】
    解:(1)△ACD 与△ABC相似,
    理由是:∵在 Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,
    ∴∠ADC=∠ACB=90°,
    ∵∠A=∠A,
    ∴△ACD∽∠ABC;
    (2)AC2=AB•AD成立,理由是:
    ∵△ACD∽∠ABC,
    ∴=,
    ∴AC2=AB•AD.
    【点睛】
    本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.
    23、每台电脑0.5万元;每台电子白板1.5万元.
    【解析】
    先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.
    【详解】
    设每台电脑x万元,每台电子白板y万元.
    根据题意,得:
    解得,
    答:每台电脑0.5万元,每台电子白板1.5万元.
    【点睛】
    本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.
    24、10 +
    【解析】
    根据实数的性质进行化简即可计算.
    【详解】
    原式=9-1+2-+6×
    =10-
    =10 +
    【点睛】
    此题主要考查实数的计算,解题的关键是熟知实数的性质.
    25、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.
    【解析】
    分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.
    (2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.
    详解:(2)解:由题意:.
    ∵,
    ∴原方程有两个不相等的实数根.
    (2)答案不唯一,满足()即可,例如:
    解:令,,则原方程为,
    解得:.
    点睛:考查一元二次方程根的判别式,
    当时,方程有两个不相等的实数根.
    当时,方程有两个相等的实数根.
    当时,方程没有实数根.
    26、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.
    【解析】
    (1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
    (2)根据平均数,中位数,众数的意义回答.
    【详解】
    解:
    (1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);
    出现次数最多的是4万元,所以众数是4(万元);
    因为第五,第六个数均是5万元,所以中位数是5(万元).
    (2)今年每个销售人员统一的销售标准应是5万元.
    理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.
    【点睛】
    本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.
    27、135° m+n
    【解析】
    试题分析:
    (1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
    (2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
    (4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
    试题解析:
    (1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
    ∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
    ∴△EAC≌△BAD,
    ∴∠BDA=∠ECA;
    (2)如下图,过点E作EG⊥CB交CB的延长线于点G,
    ∴∠EGB=90°,
    ∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
    ∴∠ABE=45°,BE=2,
    ∵∠ABC=75°,
    ∴∠EBG=180°-75°-45°=60°,
    ∴BG=1,EG=,
    ∴GC=BG+BC=4,
    ∴CE=,
    ∵△EAC≌△BAD,
    ∴BD=EC=;

    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
    ∵BD=EC,
    ∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
    即当∠ABC=135°时,BD最大=;
    (4)∵△ABD≌△AEC,
    ∴∠AEC=∠ABD,
    ∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
    ∴∠ABD+∠ABE+∠CEB=90°,
    ∴∠BFE=180°-90°=90°,
    ∴EF2+BF2=BE2,
    又∵在等腰Rt△ABE中,BE2=2AE2,
    ∴2AE2=EF2+BF2.
    点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.

    相关试卷

    黑龙江省齐齐哈尔市五县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份黑龙江省齐齐哈尔市五县重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了如图,过点A,下列各式正确的是等内容,欢迎下载使用。

    黑龙江省鸡西市达标名校2021-2022学年中考联考数学试卷含解析:

    这是一份黑龙江省鸡西市达标名校2021-2022学年中考联考数学试卷含解析,共23页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    2021-2022学年山西省运城市芮城县重点达标名校中考联考数学试卷含解析:

    这是一份2021-2022学年山西省运城市芮城县重点达标名校中考联考数学试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map