|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年黑龙江省哈尔滨市香坊区第六十九中学毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    2021-2022学年黑龙江省哈尔滨市香坊区第六十九中学毕业升学考试模拟卷数学卷含解析01
    2021-2022学年黑龙江省哈尔滨市香坊区第六十九中学毕业升学考试模拟卷数学卷含解析02
    2021-2022学年黑龙江省哈尔滨市香坊区第六十九中学毕业升学考试模拟卷数学卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年黑龙江省哈尔滨市香坊区第六十九中学毕业升学考试模拟卷数学卷含解析

    展开
    这是一份2021-2022学年黑龙江省哈尔滨市香坊区第六十九中学毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了计算的结果等于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在△ABC中,若=0,则∠C的度数是( )
    A.45° B.60° C.75° D.105°
    2.如图所示,,结论:①;②;③;④,其中正确的是有( )

    A.1个 B.2个 C.3个 D.4个
    3.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为(  )
    A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
    4.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为( )

    A.6 B.8 C.10 D.12
    5.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为(  )

    A.(2,2),(3,2) B.(2,4),(3,1)
    C.(2,2),(3,1) D.(3,1),(2,2)
    6.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )

    A.四边形AEDF是平行四边形
    B.若∠BAC=90°,则四边形AEDF是矩形
    C.若AD平分∠BAC,则四边形AEDF是矩形
    D.若AD⊥BC且AB=AC,则四边形AEDF是菱形
    7.计算的结果等于( )
    A.-5 B.5 C. D.
    8.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是(  )
    A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
    9.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
    A.2 B.3 C.4 D.5
    10.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是(  )

    A.b2>4ac B.ax2+bx+c≤6
    C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=0
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为______.

    12.在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心.
    已知:.
    求作:所在圆的圆心.
    曈曈的作法如下:如图2,
    (1)在上任意取一点,分别连接,;
    (2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
    老师说:“曈曈的作法正确.”
    请你回答:曈曈的作图依据是_____.

    13.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).
    14.计算:(3+1)(3﹣1)=   .
    15.分式方程的解为x=_____.
    16.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.

    17.一个n边形的每个内角都为144°,则边数n为______.
    三、解答题(共7小题,满分69分)
    18.(10分)用你发现的规律解答下列问题.



    ┅┅计算 .探究 .(用含有的式子表示)若的值为,求的值.
    19.(5分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:
    本次抽查的样本容量是     ;在扇形统计图中,“主动质疑”对应的圆心角为     度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
    20.(8分)如图,在中,是的中点,过点的直线交于点,交 的平行线于点,交于点,连接、.
    求证:;请你判断与的大小关系,并说明理由.
    21.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
    (1)求顶点D的坐标(用含a的代数式表示);
    (2)若以AD为直径的圆经过点C.
    ①求抛物线的函数关系式;
    ②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
    ③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.

    22.(10分)先化简,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
    23.(12分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.

    (1)求证:;
    (2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;
    (3)若PE=1,求△PBD的面积.
    24.(14分)如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
    小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
    (1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
    x
    0
    1
    2
    3
    4
    5
    6
    y
    5.2

    4.2
    4.6
    5.9
    7.6
    9.5
    说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
    (2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
    【详解】
    由题意,得 cosA=,tanB=1,
    ∴∠A=60°,∠B=45°,
    ∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
    故选C.
    2、C
    【解析】
    根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.
    【详解】
    解:如图:

    在△AEB和△AFC中,有

    ∴△AEB≌△AFC;(AAS)
    ∴∠FAM=∠EAN,
    ∴∠EAN-∠MAN=∠FAM-∠MAN,
    即∠EAM=∠FAN;(故③正确)
    又∵∠E=∠F=90°,AE=AF,
    ∴△EAM≌△FAN;(ASA)
    ∴EM=FN;(故①正确)
    由△AEB≌△AFC知:∠B=∠C,AC=AB;
    又∵∠CAB=∠BAC,
    ∴△ACN≌△ABM;(故④正确)
    由于条件不足,无法证得②CD=DN;
    故正确的结论有:①③④;
    故选C.
    【点睛】
    此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.
    3、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:将0.0000000076用科学计数法表示为.
    故选A.
    【点睛】
    本题考查了用科学计数法表示较小的数,一般形式为a×,其中,n为由原数左边起第一个不为0的数字前面的0的个数所决定.
    4、B
    【解析】
    由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出.
    【详解】
    ∵矩形AEHC是由三个全等矩形拼成的,
    ∴AB=BD=CD,AE∥BF∥DG∥CH,
    ∴∠BQP=∠DMK=∠CHN,
    ∴△ABQ∽△ADM,△ABQ∽△ACH,
    ∴,,
    ∵EF=FG= BD=CD,AC∥EH,
    ∴四边形BEFD、四边形DFGC是平行四边形,
    ∴BE∥DF∥CG,
    ∴∠BPQ=∠DKM=∠CNH,
    又∵∠BQP=∠DMK=∠CHN,
    ∴△BPQ∽△DKM,△BPQ∽△CNH,
    ∴,,
    即,,

    ∴,即,
    解得:,
    ∴,
    故选:B.
    【点睛】
    本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.
    5、C
    【解析】
    直接利用位似图形的性质得出对应点坐标乘以得出即可.
    【详解】
    解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
    以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
    ∴端点的坐标为:(2,2),(3,1).
    故选C.
    【点睛】
    本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
    6、C
    【解析】
    A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,
    ∴DE∥AF,DF∥AE,
    ∴四边形AEDF是平行四边形;即A正确;
    B选项,∵四边形AEDF是平行四边形,∠BAC=90°,
    ∴四边形AEDF是矩形;即B正确;
    C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;
    D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.
    故选C.
    7、A
    【解析】
    根据有理数的除法法则计算可得.
    【详解】
    解:15÷(-3)=-(15÷3)=-5,
    故选:A.
    【点睛】
    本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.
    8、B
    【解析】
    试题解析:0.00 000 069=6.9×10-7,
    故选B.
    点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    9、D
    【解析】
    ∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
    解得a=1.故选D. 
    10、C
    【解析】
    观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m 点睛:本题主要考查了二次函数y=ax2+bx+c图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.
    详解:∵点G是△ABC重心,BC=6,
    ∴CD=BC=3,AG:AD=2:3,
    ∵GE∥BC,
    ∴△AEG∽△ADC,
    ∴GE:CD=AG:AD=2:3,
    ∴GE=2.
    故答案为2.
    点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.
    12、①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
    【解析】
    (1)在上任意取一点,分别连接,;
    (2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
    【详解】
    解:根据线段的垂直平分线的性质定理可知:,
    所以点是所在圆的圆心(理由①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆):)
    故答案为①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
    【点睛】
    本题考查作图﹣复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    13、>;
    【解析】
    ∵=a(x-1)2-a-1,
    ∴抛物线对称轴为:x=1,
    由抛物线的对称性,点(-1,m)、(2,n)在二次函数的图像上,
    ∵|−1−1|>|2−1|,且m>n,
    ∴a>0.
    故答案为>
    14、1.
    【解析】
    根据平方差公式计算即可.
    【详解】
    原式=(3)2-12
    =18-1
    =1
    故答案为1.
    【点睛】
    本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.
    15、2
    【解析】
    根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x,解得x=2,检验可知x=2是原分式方程的解.
    故答案为2.
    16、8
    【解析】
    【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
    【详解】∵四边形ACDF是正方形,
    ∴AC=FA,∠CAF=90°,
    ∴∠CAE+∠FAB=90°,
    ∵∠CEA=90°,∴∠CAE+∠ACE=90°,
    ∴∠ACE=∠FAB,
    又∵∠AEC=∠FBA=90°,
    ∴△AEC≌△FBA,
    ∴CE=AB=4,
    ∴S阴影==8,
    故答案为8.
    【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
    17、10
    【解析】
    解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36°,因为多边形的外角和是360°,所以这个多边形的边数等于360°÷36°=10,
    故答案为:10

    三、解答题(共7小题,满分69分)
    18、解:(1);(2);(3)n=17.
    【解析】
    (1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.
    【详解】
    (1)原式=1−+−+−+−+−=1−=.
    故答案为;
    (2)原式=1−+−+−+…+−=1−=
    故答案为;
    (3) +++…+
    = (1−+−+−+…+−)
    =(1−)
    =
    =
    解得:n=17.
    考点:规律题.
    19、 (1)560;(2)54;(3)补图见解析;(4)18000人
    【解析】
    (1)本次调查的样本容量为224÷40%=560(人);
    (2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;
    (3)“讲解题目”的人数是:560−84−168−224=84(人).

    (4)60000×=18000(人), 
    答:在课堂中能“独立思考”的学生约有18000人.
    20、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行线的性质和中点的定义得到 ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.
    【详解】
    证明:(1)∵BG∥AC

    ∵是的中点

    又∵
    ∴△BDG≌△CDF

    (2)由(1)中△BDG≌△CDF
    ∴GD=FD,BG=CF
    又∵
    ∴ED垂直平分DF
    ∴EG=EF
    ∵在△BEG中,BE+BG>GE,
    ∴>
    【点睛】
    本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.
    21、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).
    【解析】
    分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.
    (2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.
    ②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.
    ③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.
    详解:
    (1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
    ∴D(1,﹣4a).
    (2)①∵以AD为直径的圆经过点C,
    ∴△ACD为直角三角形,且∠ACD=90°;
    由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:
    AC2=9a2+9、CD2=a2+1、AD2=16a2+4
    由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
    化简,得:a2=1,由a<0,得:a=﹣1,
    ②∵a=﹣1,
    ∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).
    ∵将△OBE绕平面内某一点旋转180°得到△PMN,
    ∴PM∥x轴,且PM=OB=1;
    设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;
    ∵BF=2MF,
    ∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0
    解得:x1=﹣1(舍去)、x2=.
    ∴M(,)、N(,).
    ③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:

    ∵C(0,3)、D(1,4),
    ∴CH=DH=1,即△CHD是等腰直角三角形,
    ∴△QGD也是等腰直角三角形,即:QD2=2QG2;
    设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4;
    得:(4﹣b)2=2(b2+4),
    化简,得:b2+8b﹣8=0,解得:b=﹣4±2;
    即点Q的坐标为(1,)或(1,).
    点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.
    22、,当x=0时,原式=(或:当x=-1时,原式=).
    【解析】
    先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.
    【详解】
    解:原式=×=.
    x满足﹣1≤x≤1且为整数,若使分式有意义,x只能取0,﹣1.
    当x=0时,原式=﹣(或:当x=﹣1时,原式=).
    【点睛】
    本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
    23、 (1)见解析;(2) AC∥BD,理由见解析;(3)
    【解析】
    (1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;
    (2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;
    (3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.
    【详解】
    (1)证明:∵△BCE和△CDP均为等腰直角三角形,
    ∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,
    ∴△BCE∽△DCP,
    ∴;
    (2)解:结论:AC∥BD,
    理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,
    ∴∠PCE=∠BCD,
    又∵,
    ∴△PCE∽△DCB,
    ∴∠CBD=∠CEP=90°,
    ∵∠ACB=90°,
    ∴∠ACB=∠CBD,
    ∴AC∥BD;
    (3)解:如图所示:作PM⊥BD于M,
    ∵AC=4,△ABC和△BEC均为等腰直角三角形,
    ∴BE=CE=4,
    ∵△PCE∽△DCB,
    ∴,即,
    ∴BD=,
    ∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,
    ∴PM=5sin45°=
    ∴△PBD的面积S=BD•PM=××=.

    【点睛】
    本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.
    24、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.
    【解析】
    (1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
    【详解】
    (1)根据题意,作图得,y=4.5故答案为:4.5
    (2)根据数据画图得

    (3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
    【点睛】
    本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.

    相关试卷

    2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析,共15页。试卷主要包含了下列交通标志是中心对称图形的为,下列各组数中,互为相反数的是,计算的结果为,某一公司共有51名员工等内容,欢迎下载使用。

    2021-2022学年天津二十五中学毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年天津二十五中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。

    2021-2022学年陕西省博爱中学毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年陕西省博爱中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map