终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题09【精品】 正方形中的对称、折叠问题-2022年中考数学几何模型解题策略研究(课件+讲义)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      专题09 正方形中的对称、折叠问题..pptx
    • 原卷
      专题09 正方形中的对称、折叠问题(原卷版).doc
    • 解析
      专题09 正方形中的对称、折叠问题(解析版).doc
    专题09 正方形中的对称、折叠问题.第1页
    专题09 正方形中的对称、折叠问题.第2页
    专题09 正方形中的对称、折叠问题.第3页
    专题09 正方形中的对称、折叠问题.第4页
    专题09 正方形中的对称、折叠问题.第5页
    专题09 正方形中的对称、折叠问题.第6页
    专题09 正方形中的对称、折叠问题.第7页
    专题09 正方形中的对称、折叠问题.第8页
    专题09 正方形中的对称、折叠问题(原卷版)第1页
    专题09 正方形中的对称、折叠问题(原卷版)第2页
    专题09 正方形中的对称、折叠问题(解析版)第1页
    专题09 正方形中的对称、折叠问题(解析版)第2页
    专题09 正方形中的对称、折叠问题(解析版)第3页
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题09【精品】 正方形中的对称、折叠问题-2022年中考数学几何模型解题策略研究(课件+讲义)

    展开

    这是一份专题09【精品】 正方形中的对称、折叠问题-2022年中考数学几何模型解题策略研究(课件+讲义),文件包含专题09正方形中的对称折叠问题pptx、专题09正方形中的对称折叠问题解析版doc、专题09正方形中的对称折叠问题原卷版doc等3份课件配套教学资源,其中PPT共24页, 欢迎下载使用。
    专题09 正方形中的对称、折叠问题正方形既是轴对称图形,也是中心对称图形,关于对称可以考察对称的基本性质,也可以有关于构造对称,而涉及到计算的,无非就是勾股或者三角函数.一、典例精析12019·兰州)如图,边长为的正方形的对角线交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕于点,则  A B C D【分析】由题意可得:DFEC易证DOM≌△COEOM=OE=DE-DO=故选D 【长度的计算——勾股定理】22019·青岛)如图,在正方形纸片中,的中点,将正方形纸片折叠,点落在线段上的点处,折痕为.若AD=4,则的长为      【分析】E点是CD中点,由折叠可知AG=AB=4CF=x,则RtEFG中,RtCEF中,,解得:CF的长为【对称性质——对称点连线被对称轴垂直且平分】32019·天津)如图,正方形纸片的边长为12是边上一点,连接、折叠该纸片,使点落在上的点,并使折痕经过点,得到折痕,点上,若,则的长为  【分析】易证ADE≌△BAFAF=DE=5BF=13AEBF交点为H.故GE的长为
    42019·上海)如图,在正方形中,是边的中点.将沿直线翻折,点落在点处,联结,那么的正切值是  【分析】如图,点F如图所示,连接BFDFEFAF,记AFBE交点为H由对称可知AFBE,点HAF中点,又点EAD中点,EHDF边所对的中位线,EHDF∴∠EDF=AEBtanEDF=tanAEB=2 【构造对称——将军饮马问题】52019·陕西)如图,在正方形中,交于点的中点,点边上,且为对角线上一点,则的最大值为  【分析】作点M关于BD的对称点,根据对称性可知AB上且连接,则NP共线时,此时,取到最大值.∽△ABC,即是等腰直角三角形,,故PM-PN的最大值为2 62019·安徽)如图,在正方形中,点将对角线三等分,且,点在正方形的边上,则满足的点的个数是  A0 B4 C6 D8【分析】可以先考虑一边上点P的数量,再由对称性得所有点P的个数.考虑在AD上任取一点P,所得PE+PF的最小值和最大值.先求PE+PF最小值:作点E关于直线AD的对称点,连接PE+PF=,当PF共线时,取到最小值,此时,显然>9AD上存在两个点P使得PE+PF=9,在正方形的边上有8个这样的点P故本题选D二、中考真题演练1.(2020资阳)如图,在边长为4的正方形中,点边上的一点,将沿翻折得到,连接,使,则的长是  A1 B C D   解:过点于点,并延长于点,则沿翻折得到故选:2.(2021牡丹江)如图,正方形的边长为3边上一点,.将正方形沿折叠,使点恰好与点重合,连接,则四边形的面积为  A B C6 D5   解:设正方形的边长为3由折叠可得,中,中,中,故选:3.(2020广东)如图,在正方形中,,点分别在边上,.若将四边形沿折叠,点恰好落在边上,则的长度为  A1 B C D2   解:四边形是正方形,将四边形沿折叠,点恰好落在边上,,则解得故选:4.(2021东营)如图,正方形纸片的边长为12,点上一点,将沿折叠,点落在点处,连接并延长交于点.若,则的长为      解:设交于点沿折叠,点落在点处,四边形是正方形,中,故答案为:5.如图,边长为1的正方形中,点的中点.连接,将沿折叠得到于点,求的长.   解:延长,连接四边形是正方形,由翻折的性质可知,的中点,中,
     

    相关课件

    专题02【精品】 半角模型-2022年中考数学几何模型解题策略研究(课件+讲义):

    这是一份专题02【精品】 半角模型-2022年中考数学几何模型解题策略研究(课件+讲义),文件包含专题02半角模型pptx、专题02半角模型解析版doc、专题02半角模型原卷版doc等3份课件配套教学资源,其中PPT共37页, 欢迎下载使用。

    专题20【精品】 最值之胡不归问题-2022年中考数学几何模型解题策略研究(课件+讲义):

    这是一份专题20【精品】 最值之胡不归问题-2022年中考数学几何模型解题策略研究(课件+讲义),文件包含专题20最值之胡不归问题pptx、专题20最值之胡不归问题解析版docx、专题20最值之胡不归问题原卷版docx等3份课件配套教学资源,其中PPT共31页, 欢迎下载使用。

    专题10【精品】 将军饮马模型(一)对称问题-2022年中考数学几何模型解题策略研究(课件+讲义):

    这是一份专题10【精品】 将军饮马模型(一)对称问题-2022年中考数学几何模型解题策略研究(课件+讲义),文件包含专题10将军饮马模型一对称问题pptx、专题10将军饮马模型一对称问题解析版doc、专题10将军饮马模型一对称问题原卷版doc等3份课件配套教学资源,其中PPT共24页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map