2021-2022学年安徽省马鞍山市名校中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是( )
A. B. C.9 D.
2.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( )
A.(﹣) B.(﹣) C.(﹣) D.(﹣)
3.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于( )
A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5
4.如图,,交于点,平分,交于. 若,则 的度数为( )
A.35o B.45o C.55o D.65o
5.一次函数的图像不经过的象限是:( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.若代数式有意义,则实数x的取值范围是( )
A.x>0 B.x≥0 C.x≠0 D.任意实数
7.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )
A. B.
C. D.
8.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是( )
A. B.
C. D.
9.下列各数是不等式组的解是( )
A.0 B. C.2 D.3
10.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )
A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m2
二、填空题(共7小题,每小题3分,满分21分)
11.不等式2x-5<7-(x-5)的解集是______________.
12.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.
13.抛物线y=x2﹣2x+3的对称轴是直线_____.
14.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .
15.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.
16.分解因式:2a2﹣2=_____.
17.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.
19.(5分)阅读下列材料,解答下列问题:
材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.
公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:
x2+2ax﹣3a2
=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣(2a)2
=(x+3a)(x﹣a)
材料2.因式分解:(x+y)2+2(x+y)+1
解:将“x+y”看成一个整体,令x+y=A,则
原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2.
上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把c2﹣6c+8分解因式;
(2)结合材料1和材料2完成下面小题:
①分解因式:(a﹣b)2+2(a﹣b)+1;
②分解因式:(m+n)(m+n﹣4)+3.
20.(8分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
(1)求该抛物线的表达式和∠ACB的正切值;
(2)如图2,若∠ACP=45°,求m的值;
(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.
21.(10分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)
22.(10分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.
(1)求B点到直线CA的距离;
(2)执法船从A到D航行了多少海里?(结果保留根号)
23.(12分) “春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅 (B)、菜馅(C)、三丁馅 (D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:
(1)本次参加抽样调查的居民人数是 人;
(2)将图 ①②补充完整;( 直接补填在图中)
(3)求图②中表示“A”的圆心角的度数;
(4)若居民区有8000人,请估计爱吃D汤圆的人数.
24.(14分)计算:﹣(﹣2)0+|1﹣|+2cos30°.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.
点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.
2、A
【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
【详解】
过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
由题意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠1,
则△A1OM∽△OC1N,
∵OA=5,OC=1,
∴OA1=5,A1M=1,
∴OM=4,
∴设NO=1x,则NC1=4x,OC1=1,
则(1x)2+(4x)2=9,
解得:x=±(负数舍去),
则NO=,NC1=,
故点C的对应点C1的坐标为:(-,).
故选A.
【点睛】
此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
3、C
【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.
【详解】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故选C.
【点睛】
考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
4、D
【解析】
分析:根据平行线的性质求得∠BEC的度数,再由角平分线的性质即可求得∠CFE 的度数.
详解:
又∵EF平分∠BEC,
.
故选D.
点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.
5、C
【解析】
试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.
答案为C
考点:一次函数的图像
6、C
【解析】
根据分式和二次根式有意义的条件进行解答.
【详解】
解:依题意得:x2≥1且x≠1.
解得x≠1.
故选C.
【点睛】
考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
7、B
【解析】
根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
【详解】
左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
故选B.
【点睛】
本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
8、B
【解析】
根据题意找到从左面看得到的平面图形即可.
【详解】
这个立体图形的左视图是,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.
9、D
【解析】
求出不等式组的解集,判断即可.
【详解】
,
由①得:x>-1,
由②得:x>2,
则不等式组的解集为x>2,即3是不等式组的解,
故选D.
【点睛】
此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
10、C
【解析】
科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.
【详解】
解:由科学记数法可知:250000 m2=2.5×105m2,
故选C.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
二、填空题(共7小题,每小题3分,满分21分)
11、x<
【解析】
解:去括号得:2x-5<7-x+5,移项、合并得:3x<17,解得:x<.故答案为:x<.
12、x<1
【解析】
根据一次函数的性质得出不等式解答即可.
【详解】
因为一次函数y=﹣2(x+1)+4的值是正数,
可得:﹣2(x+1)+4>0,
解得:x<1,
故答案为x<1.
【点睛】
本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.
13、x=1
【解析】
把解析式化为顶点式可求得答案.
【详解】
解:∵y=x2-2x+3=(x-1)2+2,
∴对称轴是直线x=1,
故答案为x=1.
【点睛】
本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).
14、.
【解析】
试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率.阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,∴这个点取在阴影部分的概率为:6÷=6÷18=.
考点:求随机事件的概率.
15、90°.
【解析】
根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.
【详解】
解:∵∠A+∠B+∠C=180°,∠C=30°,
∴∠A+∠B+=150°,
∵∠A﹣∠B=30°,
∴2∠A=180°,
∴∠A=90°.
故答案为:90°.
【点睛】
本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
16、2(a+1)(a﹣1).
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解.
【详解】
解:2a2﹣2,
=2(a2﹣1),
=2(a+1)(a﹣1).
【点睛】
本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
17、1
【解析】
∵骑车的学生所占的百分比是×100%=35%,
∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
故答案为1.
三、解答题(共7小题,满分69分)
18、证明见解析
【解析】
根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.
【详解】
∵EA⊥AB,EC⊥BC,
∴∠EAB=∠ECB=90°,
在Rt△EAB与Rt△ECB中
,
∴Rt△EAB≌Rt△ECB,
∴AB=CB,∠ABE=∠CBE,
∵BD=BD,
在△ABD与△CBD中
,
∴△ABD≌△CBD,
∴AD=CD.
【点睛】
本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.
19、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).
【解析】
(1)根据材料1,可以对c2-6c+8分解因式;
(2)①根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;
②根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式.
【详解】
(1)c2-6c+8
=c2-6c+32-32+8
=(c-3)2-1
=(c-3+1)(c-3+1)
=(c-4)(c-2);
(2)①(a-b)2+2(a-b)+1
设a-b=t,
则原式=t2+2t+1=(t+1)2,
则(a-b)2+2(a-b)+1=(a-b+1)2;
②(m+n)(m+n-4)+3
设m+n=t,
则t(t-4)+3
=t2-4t+3
=t2-4t+22-22+3
=(t-2)2-1
=(t-2+1)(t-2-1)
=(t-1)(t-3),
则(m+n)(m+n-4)+3=(m+n-1)(m+n-3).
【点睛】
本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解.
20、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.
【解析】
(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;
(2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(1,).待定系数法求出直线CK的解析式为y=-x+1.设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解.解之求得x的值即可得出答案;
(3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知=.据此得ON=m-1.再证△ONQ∽△HMQ得=.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.
【详解】
解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,
解得:;
∴该抛物线的解析式为y=x2﹣3x+1,
过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.
∵∠COA=∠G=90°,∠CAO=∠BAG,
∴△GAB∽△OAC.
∴=2.
∴BG=2AG,
在Rt△ABG中,∵BG2+AG2=AB2,
∴(2AG)2+AG2=22,解得: AG=.
∴BG=,CG=AC+AG=2+=.
在Rt△BCG中,tan∠ACB═.
(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.
应用“全角夹半角”可得AK=OA+HK,
设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,
在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,
∴22+h2=(6﹣h)2.解得h=,
∴点K(1,),
设直线CK的解析式为y=hx+1,
将点K(1,)代入上式,得=1h+1.解得h=﹣,
∴直线CK的解析式为y=﹣x+1,
设点P的坐标为(x,y),则x是方程x2﹣3x+1=﹣x+1的一个解,
将方程整理,得3x2﹣16x=0,
解得x1=,x2=0(不合题意,舍去)
将x1=代入y=﹣x+1,得y=,
∴点P的坐标为(,),
∴m=;
(3)四边形ADMQ是平行四边形.理由如下:
∵CD∥x轴,
∴yC=yD=1,
将y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,
解得x1=0,x2=6,
∴点D(6,1),
根据题意,得P(m, m2﹣3m+1),M(m,1),H(m,0),
∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,
①当1<m<6时,DM=6﹣m,
如图3,
∵△OAN∽△HAP,
∴,
∴=,
∴ON===m﹣1,
∵△ONQ∽△HMQ,
∴,
∴,
∴,
∴OQ=m﹣1,
∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,
∴AQ=DM=6﹣m,
又∵AQ∥DM,
∴四边形ADMQ是平行四边形.
②当m>6时,同理可得:四边形ADMQ是平行四边形.
综上,四边形ADMQ是平行四边形.
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.
21、古塔AB的高为(10+2)米.
【解析】
试题分析:延长EF交AB于点G.利用AB表示出EG,AC.让EG-AC=1即可求得AB长.
试题解析:如图,延长EF交AB于点G.
设AB=x米,则BG=AB﹣2=(x﹣2)米.
则EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.
则CD=EG﹣AC=(x﹣2)﹣x=1.
解可得:x=10+2.
答:古塔AB的高为(10+2)米.
22、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣25)海里.
【解析】
(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;
(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.
【详解】
解:(1)过点B作BH⊥CA交CA的延长线于点H,
∵∠MBC=60°,
∴∠CBA=30°,
∵∠NAD=30°,
∴∠BAC=120°,
∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,
∴BH=BC×sin∠BCA=150×=75(海里).
答:B点到直线CA的距离是75海里;
(2)∵BD=75海里,BH=75海里,
∴DH==75(海里),
∵∠BAH=180°﹣∠BAC=60°,
在Rt△ABH中,tan∠BAH==,
∴AH=25,
∴AD=DH﹣AH=(75﹣25)(海里).
答:执法船从A到D航行了(75﹣25)海里.
【点睛】
本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键.
23、(1)600;(2)120人,20%;30%;(3)108°(4)爱吃D汤圆的人数约为3200人
【解析】
试题分析:
(1)由两幅统计图中的信息可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被调查的总人数为60÷10%=600(人);
(2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120÷600×100%=20%,喜欢A类的占总人数的百分比为:180÷600×100%=30%,由此即可将统计图补充完整;
(3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:360°×30%=108°;
(4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:8000×40%=3200(人);
试题解析:
(1)本次参加抽样调查的居民的人数是:60÷10%=600(人);
故答案为600;
(2)由题意得:C的人数为600﹣(180+60+240)=600﹣480=120(人),C的百分比为120÷600×100%=20%;A的百分比为180÷600×100%=30%;
将两幅统计图补充完整如下所示:
(3)根据题意得:360°×30%=108°,
∴图②中表示“A”的圆心角的度数108°;
(4)8000×40%=3200(人),
即爱吃D汤圆的人数约为3200人.
24、.
【解析】
(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.
【详解】
原式,
,
.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
孝感市市级名校2021-2022学年中考适应性考试数学试题含解析: 这是一份孝感市市级名校2021-2022学年中考适应性考试数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是,下列命题是真命题的是等内容,欢迎下载使用。
北京市西城区名校2021-2022学年中考适应性考试数学试题含解析: 这是一份北京市西城区名校2021-2022学年中考适应性考试数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022学年重庆巴川小班重点名校中考适应性考试数学试题含解析: 这是一份2021-2022学年重庆巴川小班重点名校中考适应性考试数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,实数﹣5.22的绝对值是,不等式组 的整数解有等内容,欢迎下载使用。