2021-2022学年江西省中考数学模试卷含解析
展开1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.一元二次方程x2+2x﹣15=0的两个根为( )
A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
2.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是( )
A.PC⊥OA,PD⊥OBB.OC=ODC.∠OPC=∠OPDD.PC=PD
3.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是( )
A.将l1向左平移2个单位B.将l1向右平移2个单位
C.将l1向上平移2个单位D.将l1向下平移2个单位
4.如果,那么的值为( )
A.1B.2C.D.
5.如图,一张半径为的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )
A.B.C.D.
6.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )
A.﹣2.5B.﹣0.6C.+0.7D.+5
7.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A.B.C.D.
8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为( )
A.30°B.35°C.40°D.50°
9.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是( )
A. B.
C. D.
10.已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 x1 x22 的值为( )
A.-6B.- 3C.3D.6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得到△A1B1O,则翻滚2017次后AB中点M经过的路径长为______.
12.已知:=,则的值是______.
13.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.
14.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
15.高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:
在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.
16.分解因式:a2b+4ab+4b=______.
三、解答题(共8题,共72分)
17.(8分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
(1)若∠G=48°,求∠ACB的度数;
(1)若AB=AE,求证:∠BAD=∠COF;
(3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.
18.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD•AO.
19.(8分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.
(1)求证:∠BAF=∠CBE;
(2)若AD=5,AB=8,sinD=.求证:AF=BF.
20.(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.
21.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
22.(10分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
(2)化简:.
23.(12分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cs18°≈0.95,tan18°≈0.325)
24.在数学课上,老师提出如下问题:
小楠同学的作法如下:
老师说:“小楠的作法正确.”
请回答:小楠的作图依据是______________________________________________.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
运用配方法解方程即可.
【详解】
解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
故选择C.
【点睛】
本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
2、D
【解析】
试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.
考点:角平分线的性质;全等三角形的判定.
3、C
【解析】
根据“上加下减”的原则求解即可.
【详解】
将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
故选:C.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
4、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
5、C
【解析】
这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积.
【详解】
解:如图:
∵正方形的面积是:4×4=16;
扇形BAO的面积是:,
∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×=4-π,
∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π,
故选C.
【点睛】
本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键.
6、B
【解析】
求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
【详解】
解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,
∵5>3.5>2.5>0.7>0.6,
∴最接近标准的篮球的质量是-0.6,
故选B.
【点睛】
本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
7、C
【解析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】
解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:.
故答案为C.
【点睛】
本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
8、A
【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
【详解】
∵CC′∥AB,∠CAB=75°,
∴∠C′CA=∠CAB=75°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠CAC′=180°﹣2∠C′CA=30°.
故选A.
【点睛】
此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
9、D
【解析】
试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得
.
故选D.
考点:由实际问题抽象出二元一次方程组
10、B
【解析】
根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.
【详解】
根据题意得:x1+x2=1,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×1=-1.
故选B.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1•x2.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(+896)π.
【解析】
由圆弧的弧长公式及正△ABO翻滚的周期性可得出答案.
【详解】
解:如图
作⊥x轴于E, 易知OE=5, ,,
观察图象可知3三次一个循环,一个循环点M的运动路径为=
=,
翻滚2017次后AB中点M经过的路径长为,
故答案:
【点睛】
本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键.
12、–
【解析】
根据已知等式设a=2k,b=3k,代入式子可求出答案.
【详解】
解:由,可设a=2k,b=3k,(k≠0),
故:,
故答案:.
【点睛】
此题主要考查比例的性质,a、b都用k表示是解题的关键.
13、(1,)或(﹣1,)
【解析】
设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
【详解】
解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
∵⊙M的半径为1,
∴x=1或x=−1,
当x=1时,y=,
当x=−1时,y=.
∴P点坐标为:(1, )或(−1, ).
故答案为(1, )或(−1, ).
【点睛】
本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
14、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
【详解】
解:1.111121=2.1×11-2.
故答案为:2.1×11-2.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
15、B
【解析】
利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.
【详解】
同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;
同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;
同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;
同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;
同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;
所以B口的速度最快
故答案为B.
【点睛】
本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.
16、b(a+2)2
【解析】
根据公式法和提公因式法综合运算即可
【详解】
a2b+4ab+4b=.
故本题正确答案为.
【点睛】
本题主要考查因式分解.
三、解答题(共8题,共72分)
17、(1)48°(1)证明见解析(3)
【解析】
(1)连接CD,根据圆周角定理和垂直的定义可得结论;
(1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得 ,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论.
【详解】
(1)连接CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠ACB+∠BCD=90°,
∵AD⊥CG,
∴∠AFG=∠G+∠BAD=90°,
∵∠BAD=∠BCD,
∴∠ACB=∠G=48°;
(1)∵AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,
由(1)得:∠G=∠ACB,
∴∠BCG=∠DAC,
∴,
∵AD是⊙O的直径,AD⊥PC,
∴,
∴,
∴∠BAD=1∠DAC,
∵∠COF=1∠DAC,
∴∠BAD=∠COF;
(3)过O作OG⊥AB于G,设CF=x,
∵tan∠CAF== ,
∴AF=1x,
∵OC=OA,由(1)得:∠COF=∠OAG,
∵∠OFC=∠AGO=90°,
∴△COF≌△OAG,
∴OG=CF=x,AG=OF,
设OF=a,则OA=OC=1x﹣a,
Rt△COF中,CO1=CF1+OF1,
∴(1x﹣a)1=x1+a1,
a=x,
∴OF=AG=x,
∵OA=OB,OG⊥AB,
∴AB=1AG=x,
∴.
【点睛】
圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.
18、(1)证明见解析.(2)证明见解析.
【解析】
分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;
(2)连接BC,证△DAC∽△CAB即可得.
详解:(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
又∵AD⊥CD,
∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC,
∵AB为⊙O的直径,
∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°,
又∵∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即AC2=AB•AD,
∵AB=2AO,
∴AC2=2AD•AO.
点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
19、(1)见解析;(2)2.
【解析】
(1)根据相似三角形的判定,易证△ABF∽△BEC,从而可以证明∠BAF=∠CBE成立;
(2)根据锐角三角函数和三角形的相似可以求得AF的长
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AD=BC,
∴∠D+∠C=180°,∠ABF=∠BEC,
∵∠AFB+∠AFE=180°,∠AFE=∠D,
∴∠C=∠AFB,
∴△ABF∽△BEC,
∴∠BAF=∠CBE;
(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,
∴AE=4,DE=3
∴EC=5
∵AE⊥DC,AB∥DC,
∴∠AED=∠BAE=90°,
在Rt△ABE中,根据勾股定理得:BE=
∵BC=AD=5,
由(1)得:△ABF∽△BEC,
∴ ==
即 ==
解得:AF=BF=2
【点睛】
本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
20、有触礁危险,理由见解析.
【解析】
试题分析:过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.
试题解析:有触礁危险.理由:过点P作PD⊥AC于D.
设PD为x,
在Rt△PBD中,∠PBD=90°-45°=45°.
∴BD=PD=x.
在Rt△PAD中,
∵∠PAD=90°-60°=30°
∴AD=
∵AD=AB+BD
∴x=12+x
∴x=
∵6(+1)<18
∴渔船不改变航线继续向东航行,有触礁危险.
【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.
21、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
22、 (1)2;(2) x﹣y.
【解析】
分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
详解:(1)原式=3﹣4﹣2×+4=2;
(2)原式=•=x﹣y.
点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
23、小亮说的对,CE为2.6m.
【解析】
先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.
【详解】
解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,
∵tan∠BAD=,
∴BD=10×tan18°,
∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),
在△ABD中,∠CDE=90°﹣∠BAD=72°,
∵CE⊥ED,
∴sin∠CDE=,
∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),
∵2.6m<2.7m,且CE⊥AE,
∴小亮说的对.
答:小亮说的对,CE为2.6m.
【点睛】
本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.
24、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.
【解析】
根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.
【详解】
解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的
性质:对角线互相平分即可得到BD=CD,
所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互
相平分;两点确定一条直线.
故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点
确定一条直线.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.
收费出口编号
通过小客车数量(辆)
260
330
300
360
240
江西省吉安市朝宗实验校2021-2022学年中考数学最后一模试卷含解析: 这是一份江西省吉安市朝宗实验校2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了化简,的相反数是等内容,欢迎下载使用。
江西省南昌市十四校2021-2022学年中考数学五模试卷含解析: 这是一份江西省南昌市十四校2021-2022学年中考数学五模试卷含解析,共21页。试卷主要包含了关于x的方程,已知二次函数y=a等内容,欢迎下载使用。
江西省南城二中学2021-2022学年中考数学五模试卷含解析: 这是一份江西省南城二中学2021-2022学年中考数学五模试卷含解析,共28页。试卷主要包含了答题时请按要求用笔,|–|的倒数是等内容,欢迎下载使用。