2020年山东省日照市莒县中考二模数学试卷 及答案
展开2020年山东省日照市莒县中考数学二模试卷
一、选择题(每小题3分,共36分)
1.﹣|﹣|的值为( )
A. B.﹣ C.± D.2
2.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000326毫米,用科学记数法表示为( )
A.3.26×10﹣4毫米 B.0.326×10﹣4毫米
C.3.26×10﹣4厘米 D.32.6×10﹣4厘米
3.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )
A.主视图 B.左视图
C.俯视图 D.主视图和左视图
4.下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是( )
A.① B.② C.③ D.④
5.在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是( )
A.众数是98 B.平均数是90 C.中位数是91 D.方差是56
6.已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k≤2 B.k≤0 C.k<2 D.k<0
7.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下列方程中正确的是( )
A. B.
C. D.
8.函数y=中自变量x的取值范围是( )
A.x≥2且x≠1 B.x≥2 C.x≠1 D.﹣2≤x<1
9.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:
(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;
(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;
(3)连接BD,BC.
下列说法不正确的是( )
A.∠CBD=30° B.S△BDC=AB2
C.点C是△ABD的外心 D.sin2A+cos2D=1
10.如图,∠AOB为锐角,在射线OA上依次截取A1A2=A2A3=A3A4=…=AnAn+1,在射线OB上依次截取B1B2=B2B3=B3B4=…=BnBn+1,记Sn为△AnBnBn+1的面积(n为正整数),若S3=7,S4=10,则S2019=( )
A.4039 B.4041 C.6055 D.6058
11.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是( )
A. B.
C. D.
12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:
①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
A.1 B.2 C.3 D.4
二、填空题(每小题4分,共16分)
13.(4分)分解因式:a3b+2a2b2+ab3= .
14.(4分)不等式组的最小整数解是 .
15.(4分)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为 cm2.(结果保留π)
16.(4分)如图,以矩形OABC的长OC作x轴,以宽OA作y轴建立平面直角坐标系,OA=4,OC=8,现作反比例函数交BC于点E,交AB于点F,沿EF折叠,点B落在OC的点G处,OG=3GC,则k的值是 .
三、解答题(共68分)
17.先化简,再求值÷(﹣m﹣1),其中m=﹣2.
18.某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:
(1)本次问卷调查共调查了 名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为 ;
(2)补全图①中的条形统计图;
(3)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.
19.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
20.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.
(1)求证:PB是⊙O的切线;
(2)若OC=3,AC=4,求sinE的值.
21.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标和△PAB的面积;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,直接写出符合条件的所有点M的坐标;若不存在,请说明理由.
22.如图①,在正方形ABCD和正方形AB'C'D'中,AB=2,AB'=,连接CC’
(1)问题发现: .
(2)拓展探究:将正方形AB'C'D'绕点A逆时针旋转,记旋转角为θ,连接BB',试判断:当0°≤θ<360°时,的值有无变化?请仅就图②中的情形给出你的证明;
(3)问题解决:请直接写出在旋转过程中,当C,C′,D'三点共线时BB′的长.
2020年山东省日照市莒县中考数学二模试卷
参考答案与试题解析
一、选择题(每小题3分,共36分)
1.﹣|﹣|的值为( )
A. B.﹣ C.± D.2
【分析】根据实数的绝对值的意义解答即可.
【解答】解:﹣|﹣|=﹣.
故选:B.
2.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000326毫米,用科学记数法表示为( )
A.3.26×10﹣4毫米 B.0.326×10﹣4毫米
C.3.26×10﹣4厘米 D.32.6×10﹣4厘米
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.000326毫米,用科学记数法表示为3.26×10﹣4毫米.
故选:A.
3.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )
A.主视图 B.左视图
C.俯视图 D.主视图和左视图
【分析】根据从上边看得到的图形是俯视图,可得答案.
【解答】解:从上边看是一个田字,
“田”字是中心对称图形,
故选:C.
4.下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是( )
A.① B.② C.③ D.④
【分析】直接利用完全平方公式以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.
【解答】解:①(a+b)2=a2+2ab+b2,故此选项错误;
②(﹣2a2)2=4a4,故此选项错误;
③a5÷a3=a2,正确;
④a3•a4=a7,故此选项错误.
故选:C.
5.在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是( )
A.众数是98 B.平均数是90 C.中位数是91 D.方差是56
【分析】根据众数、中位数的概念、平均数、方差的计算公式计算.
【解答】解:98出现的次数最多,
∴这组数据的众数是98,A说法正确;
=(80+98+98+83+91)=90,B说法正确;
这组数据的中位数是91,C说法正确;
S2=[(80﹣90)2+(98﹣90)2+(98﹣90)2+(83﹣90)2+(91﹣90)2]
=×278
=55.6,D说法错误;
故选:D.
6.已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k≤2 B.k≤0 C.k<2 D.k<0
【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.
【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,
解得k<2.
故选:C.
7.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下列方程中正确的是( )
A. B.
C. D.
【分析】设原计划每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
【解答】解:设设实际工作时每天绿化的面积为x万平方米,则原计划工作每天绿化的面积为万平方米,
依题意得:.
故选:C.
8.函数y=中自变量x的取值范围是( )
A.x≥2且x≠1 B.x≥2 C.x≠1 D.﹣2≤x<1
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
【解答】解:由题意得,x﹣2≥0且x﹣1≠0,
解得x≥2且x≠1,
∴x≥2.
故选:B.
9.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:
(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;
(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;
(3)连接BD,BC.
下列说法不正确的是( )
A.∠CBD=30° B.S△BDC=AB2
C.点C是△ABD的外心 D.sin2A+cos2D=1
【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;
【解答】解:由作图可知:AC=AB=BC,
∴△ABC是等边三角形,
由作图可知:CB=CA=CD,
∴点C是△ABD的外心,∠ABD=90°,
BD=AB,
∴S△ABD=AB2,
∵AC=CD,
∴S△BDC=AB2,
故A、B、C正确,
故选:D.
10.如图,∠AOB为锐角,在射线OA上依次截取A1A2=A2A3=A3A4=…=AnAn+1,在射线OB上依次截取B1B2=B2B3=B3B4=…=BnBn+1,记Sn为△AnBnBn+1的面积(n为正整数),若S3=7,S4=10,则S2019=( )
A.4039 B.4041 C.6055 D.6058
【分析】过A3作A3C⊥OB于C,过A4作A4D⊥OB于D,过A2019作A2019E⊥OB于E,则△OA3C∽△OA4D∽△OA2019E,设OA1=a,A1A2=A2A3=A3A4=…=AnAn+1=1个单位,由等底的三角形面积比等于三角形的高之比,得出=,即=,解得a=,由相似三角形的性质得出=,即=,求出A2019E=6055,即可得出结果.
【解答】解:过A3作A3C⊥OB于C,过A4作A4D⊥OB于D,过A2019作A2019E⊥OB于E,如图所示:
则△OA3C∽△OA4D∽△OA2019E,
设OA1=a,A1A2=A2A3=A3A4=…=AnAn+1=1个单位,
∵S3=7,S4=10,B1B2=B2B3=B3B4=…=BnBn+1,
∴=,
即=,
解得:a=,
∴=,
即=,
∴A2019E=6055,
∴S2019=6055,
故选:C.
11.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是( )
A. B.
C. D.
【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.
【解答】解:当0≤t<2时,S=×2t××(4﹣t)=﹣t2+2t;
当2≤t<4时,S=×4××(4﹣t)=﹣t+4;
只有选项D的图形符合.
故选:D.
12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:
①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
A.1 B.2 C.3 D.4
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【解答】解:①抛物线开口方向向下,则a<0.
抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.
抛物线与y轴交于正半轴,则c>0
所以abc<0.
故①错误.
②∵抛物线对称轴为直线x=﹣=1,
∴b=﹣2a,即2a+b=0,
故②正确;
③∵抛物线对称轴为直线x=1,
∴函数的最大值为:a+b+c,
∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,
故③错误;
④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,
∴抛物线与x轴的另一个交点在(﹣1,0)的右侧
∴当x=﹣1时,y<0,
∴a﹣b+c<0,
故④错误;
⑤∵ax12+bx1=ax22+bx2,
∴ax12+bx1﹣ax22﹣bx2=0,
∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,
∴(x1﹣x2)[a(x1+x2)+b]=0,
而x1≠x2,
∴a(x1+x2)+b=0,即x1+x2=﹣,
∵b=﹣2a,
∴x1+x2=2,
故⑤正确.
综上所述,正确的有②⑤.
故选:B.
二、填空题(每小题4分,共16分)
13.(4分)分解因式:a3b+2a2b2+ab3= ab(a+b)2 .
【分析】首先提取公因式ab,再利用完全平方公式分解因式即可.
【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2.
故答案为:ab(a+b)2.
14.(4分)不等式组的最小整数解是 0 .
【分析】首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,从而得出答案.
【解答】解:解不等式x+1>0,得:x>﹣1,
解不等式1﹣x≥0,得:x≤2,
则不等式组的解集为﹣1<x≤2,
所以不等式组的最小整数解为0,
故答案为:0.
15.(4分)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为 π cm2.(结果保留π)
【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.
【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,
∴∠B′OC′=60°,△BCO≌△B′C′O,
∴∠B′OC=60°,∠C′B′O=30°,
∴∠B′OB=120°,
∵AB=2cm,
∴OB=1cm,OC′=,
∴B′C′=,
∴S扇形B′OB==π,
S扇形C′OC==,
∴阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=π﹣=π;
故答案为:π.
16.(4分)如图,以矩形OABC的长OC作x轴,以宽OA作y轴建立平面直角坐标系,OA=4,OC=8,现作反比例函数交BC于点E,交AB于点F,沿EF折叠,点B落在OC的点G处,OG=3GC,则k的值是 12 .
【分析】根据折叠的性质和勾股定理,利用方程求出CE,确定点E的坐标即可.
【解答】解:由折叠得,EG=EB,
∵OC=8,OG=3GC,
∴OG=8×=6,GC=8×=2,
设EC=x,则EB=EG=4﹣x,
在Rt△EGC中,由勾股定理得,
(4﹣x)2=x2+22,
解得x=,
∴E(8,),
把E(8,)代入反比例函数关系式得,
k=8×=12,
故答案为:12.
三、解答题(共68分)
17.先化简,再求值÷(﹣m﹣1),其中m=﹣2.
【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.
【解答】解:原式=÷(﹣)
=÷
=•
=﹣,
当m=﹣2时,
原式=﹣
=﹣
=﹣1+2.
18.某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:
(1)本次问卷调查共调查了 200 名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为 25% ;
(2)补全图①中的条形统计图;
(3)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.
【分析】(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数,用“新闻节目”人数除以总人数可得;
(2)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;
(3)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.
【解答】解:(1)本次问卷调查的总人数为45÷22.5%=200人,
图②中最喜爱“新闻节目”的人数占调查总人数的百分比为×100%=25%,
故答案为:200、25%;
(2)“体育”类节目的人数为200﹣(50+35+45)=70人,
补全图形如下:
(3)画树状图为:
共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,
所以恰好抽到最喜爱“B”和“C”两位观众的概率==.
19.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
【分析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据平均速度=路程÷时间结合A车的平均速度比B车的平均速度慢80km/h,即可得出关于t的分式方程,解之经检验后即可得出结论.
【解答】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.5,
经检验,t=2.5是原分式方程的解,且符合题意,
∴1.4t=3.5.
答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时.
20.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.
(1)求证:PB是⊙O的切线;
(2)若OC=3,AC=4,求sinE的值.
【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.
(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题
【解答】(1)证明:连接OB∵PO⊥AB,
∴AC=BC,
∴PA=PB
在△PAO和△PBO中
∴△PAO≌△PBO
∴∠OBP=∠OAP=90°
∴PB是⊙O的切线.
(2)连接BD,则BD∥PO,且BD=2OC=6
在Rt△ACO中,OC=3,AC=4
∴AO=5
在Rt△ACO与Rt△PAO中,
∠AOC=∠POA
∠PAO=∠ACO=90°
∴△ACO∼△PAO
=
∴PO=,PA=
∴PB=PA=
在△EPO与△EBD中,
BD∥PO
∴△EPO∽△EBD
∴=,
解得EB=,
PE=,
∴sinE==.
另解:过BF⊥AE于点F,
则sin∠E=sin∠OBF.
由△AOC∽△ABF,
可算出BF=,
∴OF=.
∴sinE=sin∠OBF=.
21.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标和△PAB的面积;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,直接写出符合条件的所有点M的坐标;若不存在,请说明理由.
【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;
(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),根据PE=DE,列方程可得P的坐标,先求出点E的坐标,从而得PE=2,根据S△PAB=S△PAE+S△PBE=×PE×(xB﹣xA)计算可得;
②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.
【解答】解:(1)∵B(1,0),
∴OB=1,
∵OC=2OB=2,
∴C(﹣2,0),
Rt△ABC中,tan∠ABC=2,
∴=2,
∴=2,
∴AC=6,
∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,
解得:,
∴抛物线的解析式为:y=﹣x2﹣3x+4;
(2)①∵A(﹣2,6),B(1,0),
易得AB的解析式为:y=﹣2x+2,
设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),
∵PE=DE,
∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),
x=1(舍)或﹣1,
∴P(﹣1,6);
在y=﹣2x+2中x=﹣1时,y=4,即E(﹣1,4),
则PE=2,
∴S△PAB=S△PAE+S△PBE
=×PE×(xB﹣xA)
=×2×(1+2)
=3;
②∵M在直线PD上,且P(﹣1,6),
设M(﹣1,y),
∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,
AB2=(1+2)2+62=45,
分三种情况:
i)当∠AMB=90°时,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=3±,
∴M(﹣1,3+)或(﹣1,3﹣);
ii)当∠ABM=90°时,有AB2+BM2=AM2,
∴45+4+y2=1+(y﹣6)2,
y=﹣1,
∴M(﹣1,﹣1),
iii)当∠BAM=90°时,有AM2+AB2=BM2,
∴1+(y﹣6)2+45=4+y2,
y=,
∴M(﹣1,);
综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
22.如图①,在正方形ABCD和正方形AB'C'D'中,AB=2,AB'=,连接CC’
(1)问题发现: .
(2)拓展探究:将正方形AB'C'D'绕点A逆时针旋转,记旋转角为θ,连接BB',试判断:当0°≤θ<360°时,的值有无变化?请仅就图②中的情形给出你的证明;
(3)问题解决:请直接写出在旋转过程中,当C,C′,D'三点共线时BB′的长.
【分析】(1)如图①中,延长D′C′交BC于H.证明△CC′H是等腰直角三角形即可解决问题.
(2)结论:=,值不变.如图②中,连接AC,AC′.证明△BAB′∽△CAC′即可解决问题.
(3)分两种情形画出图形分别求解即可.
【解答】解:(1)如图①中,延长D′C′交BC于H.
由题意四边形BHC′B′,四边形CHDD′D都是矩形,
∴BB′=HC′,DD′=CH,
∵AB=AD,
∴BB′=DD′,
∴CH=HC′,
∵∠CHC′=90°,
∴△CHC′是等腰直角三角形,
∴==.
故答案为.
(2)结论:=,值不变.
理由:如图②中,连接AC,AC′.
∵四边形ABCD,四边形AB′C′D′都是正方形,
∴∠BAC=∠B′AC′=45°,==,
∴∠BAB′=∠CAC′,
∴△BAB′∽△CAC′,
∴==.
(3)如图③﹣1中,当C,C′,D′共线时.易知AC=2,AD′=,
∴CD′==,
∴CC′=﹣,
∴BB′=CC′=﹣1
如图③﹣2中,当C,D′,C′共线时,同法可得CC′=+,BB′=CC′=+1.
综上所述,满足条件的BB′的长为+1或﹣1.
2022-2023学年山东省日照市莒县八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年山东省日照市莒县八年级(下)期末数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年山东省日照市莒县八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年山东省日照市莒县八年级(下)期末数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省日照市新营中学九年级中考二模考试数学试卷: 这是一份2023年山东省日照市新营中学九年级中考二模考试数学试卷,共4页。