还剩42页未读,
继续阅读
所属成套资源:2022年中考数学高频考点专题突破
成套系列资料,整套一键下载
考点07 与方程不等式有关的应用题-2022年中考数学高频考点专题突破 (全国通用)(解析版)
展开
考点7.与方程(不等式)有关的应用题
知识框架:
基础知识点:
知识点1-1一元一次方程(二元一次方程组)的应用
1.列方程(组)解应用题的一般步骤
(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);
(5)检验结果;(6)作答(不要忽略未知数的单位名称).
2.一元一次方程(二元一次方程组)常见的应用题型
(1)销售打折问题:利润售价-成本价;利润率=×100%;售价=标价×折扣;销售额=售价×数量.
(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.
(3)工程问题:工作量=工作效率×工作时间.
(4)行程问题:路程=速度×时间.
(5)相遇问题:全路程=甲走的路程+乙走的路程.
(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.
(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.
(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.
知识点1-2 一元一次不等式(组)的应用
1.列方程(组)解应用题的一般步骤
(1)审题;(2)设出未知数;(3)列出含未知数的不等式(组);(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).
2.求解此类题目的难点是建立“不等式(组)模型”,通过求解不等式(组)的解集并与实际相结合即可.
知识点1-3 分式方程的应用
1.列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.
2. 分式方程的应用主要涉及工程问题、行程问题、销售问题等.
每个问题中涉及到三个量的关系,如:工作时间=,时间=等.
重难点题型
题型1.销售问题
(1)打折销售
1.(2020·黑龙江牡丹江·)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.
【答案】八
【分析】打折销售后要保证打折后利率为20%,因而可以得到不等关系为:利润率=20%,设可以打x折,根据不等关系列出不等式求解即可.
【解析】解:设应打x折,则根据题意得:(180×x×10%-120)÷120=20%,
解得:x=8.故商店应打八折.故答案为:八.
【点睛】本题考查一元一次方程的实际应用,解题关键是读懂题意,找到符合题意的等量关系式,同时要注意掌握利润率的计算方法.
2.(2020·辽宁朝阳·中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于,则这种品牌衬衫最多可以打几折?( )
A.8 B.6 C.7 D.9
【答案】B
【分析】根据售价-进价=利润,利润=进价利润率可得不等式,解之即可.
【解析】设可以打x折出售此商品,
由题意得:240,解得x6,故选:B
【点睛】此题考查了销售问题,注意销售问题中量之间的数量关系是列不等式的关键.
3.(2020·山西中考真题)年月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满元立减元(每次只能使用一张)某品牌电饭煲按进价提高后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金元.求该电饭煲的进价.
【答案】该电饭煲的进价为元
【分析】根据满元立减元可知,打八折后的总价减去128元是实际付款数额,即可列出等式.
【解析】解:设该电饭煲的进价为元 根据题意,得
解,得.答;该电饭煲的进价为元
【点睛】本题主要考察了打折销售知识点,准确找出它们之间的关系列出等式方程是解题关键.
(2)分段计费
1.(2020·江苏徐州·中考真题)本地某快递公司规定:寄件不超过千克的部分按起步价计费;寄件超过千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:
收费标准
目的地
起步价(元)
超过千克的部分(元千克)
上海
北京
实际收费
目的地
质量
费用(元)
上海
北京
求,的值.
【答案】,
【分析】根据题意“寄件不超过千克的部分按起步价计费;寄件超过千克的部分按千克计费”列出方程组求解即可得到结果.
【解析】根据题意得:,解得:,∴,.
【点睛】本题考查了由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.
2.(2020·浙江绍兴·中考真题)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.
【答案】100或85.
【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.
【解析】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;
②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.
故所购商品的标价是100或85元.故答案为100或85.
【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.
(3)正常销售
1.(2020·辽宁朝阳·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得( )
A. B.
C. D.
【答案】B
【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.
【解析】设班级共有x名学生,依据题意列方程得,故选:B.
【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.
2.(2020·江苏扬州·中考真题)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
进货单
商品
进价(元/件)
数量(件)
总金额(元)
甲
7200
乙
3200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
李阿姨:我记得甲商品进价比乙商品进价每件高50%.
王师傅:甲商品比乙商品的数量多40件.
请你求出乙商品的进价,并帮助他们补全进货单.
【答案】乙商品的进价40元/件;补全进货单见详解
【分析】设出乙的进货价为x,表示出乙的进货数量,表示出甲的进货数量与进货价,根据假的进货数量乘以进货价等于甲的总金额列出方程,解出方程即可.
【解析】解:设乙的进货价为x,则乙的进货数量为 件,
所以甲的数量为(+40)件,甲的进货价为x(1+50%)
可列方程为:x(1+50%)(+40)=7200
4800+60x=7200 60x=2400 解得:x=40.
经检验:x=40是原方程的解,所以乙的进价为40元/件.
答:乙商品的进价为40元/件.
,+40=120,x(1+50%)=60,
补全进货单如下表:
商品
进价(元/件)
数量(件)
总金额(元)
甲
60
120
7200
乙
40
80
3200
【点睛】本题考查的是分式方程的应用,通过题目给的条件,设出乙的进货价,表示出甲的数量与进货价,通过甲的进货价×甲的数量=甲的总金额,列出分式方程,解出答案,解答本题的关键在于表示出相关量,找出等量关系,列出方程.
3.(2020·吉林长春·中考真题)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?
【答案】2万斤
【分析】由题意设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,根据单价=总价÷数量结合今年每斤黑木耳的售价比去年增加了20元,即可得出关于x的分式方程,解之经检验后即可得出结论.
【解析】解:设该村企去年黑木耳的年销量为万斤 依题意得解得:
经检验是原方程的根,且符合题意.
答:该村企去年黑木耳的年销量为2万斤.
【点睛】本题考查分式方程的应用,根据题意找准等量关系,正确列出分式方程是解题的关键.
题型2.行程问题
1.(2020·湖北荆州·中考真题)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是( )
A.-=20 B.-=20 C.-= D.=
【答案】C
【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.
【解析】由题意可得,-=,故选:C.
【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.
2.(2020·四川绵阳·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )
A.1.2小时 B.1.6小时 C.1.8小时 D.2小时
【答案】C
【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.
【解析】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,
根据两人对话可知:甲的速度为km/h,乙的速度为km/h,
根据题意得:,解得:x1=1.8或x2=9,
经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故答案为:C.
【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.
3.(2020·广西中考真题)甲、乙两地相距,提速前动车的速度为,提速后动车的速度是提速前的倍,提速后行车时间比提速前减少,则可列方程为( )
A. B. C. D.
【答案】A
【分析】行驶路程都是600千米;提速前后行驶时间分别是:;因为提速后行车时间比提速前减少,所以,提速前的时间-提速后的时间=.
【解析】根据提速前的时间-提速后的时间=,可得
即故选:A
【点睛】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
4.(2020·吉林长春·中考真题)已知、两地之间有一条长240千米的公路.甲车从地出发匀速开往地,甲车出发两小时后,乙车从地出发匀速开往地,两车同时到达各自的目的地.两车行驶的路程之和(千米)与甲车行驶的时间(时)之间的函数关系如图所示.
(1)甲车的速度为_________千米/时,的值为____________.
(2)求乙车出发后,与之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.
【答案】(1)40,480;(2);(3)小时或小时
【分析】(1)根据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=240×2=480;(2)根据题意直接运用待定系数法进行分析解得即可;(3)由题意分两车相遇前与相遇后两种情况分别列方程解答即可.
【解析】解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;
(2)设与之间的函数关系式为,由图可知,函数图象过点,,
所以解得所以与之间的函数关系式为;
(3)两车相遇前:解得:
两车相遇后:解得:
答:当甲、乙两车相距100千米时,甲车行驶的时间是小时或小时.
【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
5.(2019·浙江台州·中考真题)一道来自课本的习题:
从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走,平路每小时走,下坡每小时走,那么从甲地到乙地需,从乙地到甲地需.甲地到乙地全程是多少?
小红将这个实际问题转化为二元一次方程组问题,设未知数,,已经列出一个方程,则另一个方程正确的是( )
A. B. C. D.
【答案】B
【分析】根据未知数,,从乙地到甲地需,即可列出另一个方程.
【解析】设从甲地到乙地的上坡的距离为,平路的距离为,已经列出一个方程,则另一个方程正确的是:.故选B.
【点睛】此题主要考查二元一次方程组的应用,解题的关键是等量关系列出方程.
6.(2020·宁夏中考真题)“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离与步行时间之间的函数关系式如图中折线段所示.
(1)小丽与小明出发_______相遇;(2)在步行过程中,若小明先到达甲地.
①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.
【答案】(1)30;(2)①小丽步行的速度为,小明步行的速度为;②点,点C表示:两人出发时,小明到达甲地,此时两人相距.
【分析】(1)直接从图像获取信息即可;(2)①设小丽步行的速度为,小明步行的速度为,且,根据图像和题意列出方程组,求解即可;②设点C的坐标为,根据题意列出方程解出x,再根据图像求出y即可,再结合两人的运动过程解释点C的意义即可.
【解析】(1)由图像可得小丽与小明出发30相遇,故答案为:30;
(2)①设小丽步行的速度为,小明步行的速度为,且,
则,解得:,
答:小丽步行的速度为,小明步行的速度为;
②设点C的坐标为,则可得方程,解得,
,∴点,
点C表示:两人出发时,小明到达甲地,此时两人相距.
【点睛】本题考查了二元一次方程组的实际应用,一元一次方程的实际应用,从图像获取信息是解题关键.
7.(2020·江苏泰州·中考真题)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线为全程的普通道路,路线包含快速通道,全程,走路线比走路线平均速度提高,时间节省,求走路线的平均速度.
【答案】75km/h
【分析】根据题意,设走线路A的平均速度为,则线路B的速度为,由等量关系列出方程,解方程即可得到答案.
【解析】解:设走线路A的平均速度为,则线路B的速度为,则
,解得:,检验:当时,,
∴是原分式方程的解;∴走路线的平均速度为:(km/h);
【点睛】本题考查分式方程的应用,以及理解题意的能力,解题的关键是以时间做为等量关系列方程求解.
题型3.工程问题
1.(2020·辽宁鞍山·中考真题)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是( )
A. B. C. D.
【答案】B
【分析】根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可.
【解析】解:根据题意得:,故选B.
【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.
2.(2020·内蒙古呼伦贝尔·中考真题)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做个零件,下列方程正确的是( )
A. B.
C. D.
【答案】A
【分析】设甲每天做x个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.
【解析】解:设甲每天做x个零件,根据题意得:,故选:A.
【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.
3.(2020·湖南长沙·中考真题)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得( )
A. B. C. D.
【答案】B
【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率,再结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程.
【解析】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,
依题意,得:.故选:B.
【点睛】本题考查了由实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.
4.(2020·湖北中考真题)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务若设原计划每周生产x万个口罩,则可列方程为( )
A. B.
C. D.
【答案】A
【分析】根据第一周之后,按原计划的生产时间=提速后生产时间+1,可得结果.
【解析】由题知: 故选:A.
【点睛】本题考查了分式方程的实际应用问题,根据题意列出方程式即可.
5.(2020·辽宁铁岭·中考真题)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工米,乙工程队每天施工米,根据题意,所列方程组正确的是( )
A. B.C. D.
【答案】D
【分析】根据“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”和“甲工程队每天比乙工程队多施工2米”可分别列出方程,联立即可.
【解析】解:依据题意:“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”可列方程,
“甲工程队每天比乙工程队多施工2米”可列方程,
故可列方程组:,故选:D.
【点睛】本题考查列二元一次方程组.能仔细读题,找出描述等量关系的语句是解题关键.
6.(2020·海南中考真题)某村经济合作社决定把吨竹笋加工后再上市销售,刚开始每天加工吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工吨,前后共用天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?
【答案】4天;2天
【分析】设改进加工方法前用了天,改进加工方法后用了天,根据“前后共用天完成,总共加工22吨” 这两个关键信息建立方程组即可求解.
【解析】解:设改进加工方法前用了天,改进加工方法后用了天,
则解得经检验,符合题意.
答:改进加工方法前用了天,改进加工方法后用了天.
【点睛】本题考查了二元一次方程组的解法及应用,找出等量关系,正确列出方程组是解决本题的关键.
7.(2020·辽宁大连·中考真题)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?
【答案】每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.
【分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车,列方程组求解.
【解析】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥, 由题意得,
, 整理得: 解得:.
答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.
【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
题型4.方案问题
1.(2020·黑龙江鹤岗·中考真题)学校计划用200元钱购买、两种奖品,种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案( )
A.2种 B.3种 C.4种 D.5种
【答案】B
【分析】设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为正整数可求出解.
【解析】设购买了种奖品个,种奖品个,根据题意得:,
化简整理得:,得,
∵,为非负整数,∴,,,∴有3种购买方案:
方案1:购买了种奖品0个,种奖品8个;
方案2:购买了种奖品5个,种奖品5个;
方案3:购买了种奖品10个,种奖品2个.故选:B.
【点睛】本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为非负整数确定出x,y的值.
2.(2020·黑龙江鸡西·中考真题)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用元钱购买、、三种奖品,种每个元,种每个元,种每个元,在种奖品不超过两个且钱全部用完的情况下,有多少种购买方案( )
A.种 B.种 C.种 D.种
【答案】D
【分析】设购买、、三种奖品分别为个,根据题意列方程得,化简后根据均为正整数,结合种奖品不超过两个分类讨论,确定解的个数即可.
【解析】解:设购买、、三种奖品分别为个,
根据题意列方程得,即,
由题意得均为正整数.①当z=1时,∴,
∴y分别取1,3,5,7,9,11,13,15共8种情况时,x为正整数;
②当z=2时,∴,
∴y可以分别取2,4,6,8,10,12共6种情况,x为正整数;
综上所述:共有8+6=14种购买方案.故选:D
【点睛】本题考查了求方程组的正整数解,根据题意列出方程,并确定方程组的解为正整数是解题关键.
3.(2019·湖北省直辖县级单位·中考真题)把一根长9m的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有( )
A.3种 B.4种 C.5种 D.9种
【答案】B
【分析】可列二元一次方程解决这个问题.
【解析】解:设的钢管根,根据题意得:,
、均为整数,,,,.故选:B.
【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.
4.(2020·四川宜宾·中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( )
A.2种 B.3种 C.4种 D.5种
【答案】B
【分析】设购买A 型分类垃圾桶x个,则购买B型垃圾桶(6-x),然后根据题意列出不等式组,确定不等式组整数解的个数即可.
【解析】解:设购买A 型分类垃圾桶x个,则购买B型垃圾桶(6-x)个
由题意得:,解得4≤x≤6
则x可取4、5、6,即有三种不同的购买方式.故答案为B.
【点睛】本题考查了一元一次方程组的应用,弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.
5.(2020·山东菏泽·中考真题)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买根跳绳和个毽子共需元;购买根跳绳和个毽子共需元.(1)求购买一根跳绳和一个毽子分别需要多少元;
(2)某班需要购买跳绳和毽子的总数量是,且购买的总费用不能超过元;若要求购买跳绳的数量多于根,通过计算说明共有哪几种购买跳绳的方案.
【答案】(1)购买一根跳绳需要6元,一个毽子需要4元;(2)方案一:购买跳绳21根;方案二:购买跳绳22根
【分析】(1)设购买一根跳绳需要x元,一个毽子需要y元,依题意列出二元一次方程组解之即可;
(2)设学校购进跳绳m根,则购进毽子(54-m)根,根据题意列出不等式解之得m的范围,进而可判断购买方案.
【解析】(1)设购买一根跳绳需要x元,一个毽子需要y元,
依题意,得:,解得:,
答:购买一根跳绳需要6元,一个毽子需要4元;
(2)设学校购进跳绳m根,则购进毽子(54-m)根,
根据题意,得:,解得:m≤22,又m﹥20,且m为整数,∴m=21或22,
∴共有两种购买跳绳的方案,方案一:购买跳绳21根;方案二:购买跳绳22根.
【点睛】本题考查二元一次方程组以及一元一次不等式的应用,根据题意正确列出方程式及不等式是解答的关键.
6.(2020·江苏连云港·中考真题)甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,公司共捐款140000元.下面是甲、乙两公司员工的一段对话:
(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买、两种防疫物资,种防疫物资每箱15000元,种防疫物资每箱12000元.若购买种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:、两种防疫物资均需购买,并按整箱配送).
【答案】(1)甲公司有150人,乙公司有180人;(2)有2种购买方案:购买8箱种防疫物资、10箱种防疫物资,或购买4箱种防疫物资、15箱种防疫物资
【分析】(1)设乙公司有x人,则甲公司有人,根据对话,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)(2)设购买种防疫物资箱,购买种防疫物资箱,根据甲公司共捐款100000元,公司共捐款140000元.列出方程,求解出,根据整数解,约束出m、n的值,即可得出方案.
【解析】(1)设乙公司有人,则甲公司有人,由题意得,解得.
经检验,是原方程的解.∴.答:甲公司有150人,乙公司有180人.
(2)设购买种防疫物资箱,购买种防疫物资箱,由题意得
,整理得.
又因为,且、为正整数,所以,.
答:有2种购买方案:购买8箱种防疫物资、10箱种防疫物资,或购买4箱种防疫物资、15箱种防疫物资.
【点睛】本题考查了分式方程的应用,方案问题,二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.
题型5.数学文化问题
1.(2020·福建中考真题)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为株,则符合题意的方程是( )
A. B. C. D.
【答案】A
【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.
【解析】解:由题意得:,故选A.
【点睛】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.
2.(2020·浙江嘉兴·中考真题)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程_____.
【答案】
【分析】根据“第二次每人所得与第一次相同,”列分式方程即可得到结论.
【解析】解:根据题意得,,故答案为:
【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出分式方程,是解题的关键.
3.(2020·江苏无锡·中考真题)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子最井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是___________尺.
【答案】8
【分析】先设绳长x尺,由题意列出方程,然后根据绳长即可求出井深.
【解析】解:设绳长x尺,由题意得x-4=x-1,解得x=36,井深:×36-4=8(尺),故答案为:8.
【点睛】本题考查了一元一次方程的实际应用,理解题意,找出等量关系是解题关键.
4.(2020·湖北恩施·中考真题)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒斛,1个小桶盛酒斛,下列方程组正确的是( ).
A. B. C. D.
【答案】A
【分析】根据大小桶所盛酒的数量列方程组即可.
【解析】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,
∵1个大桶加上5个小桶可以盛酒2斛,∴x+5y=2,
∴得到方程组,故选:A.
【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.
5.(2020·四川绵阳·中考真题)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )
A.160钱 B.155钱 C.150钱 D.145钱
【答案】C
【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【解析】解:设共有x人合伙买羊,羊价为y钱,
依题意,得:,解得:.故选:C.
【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
6.(2020·山东临沂·中考真题)《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为( )
A. B. C. D.
【答案】B
【分析】根据若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,列二元一次方程组.
【解析】解:设有x人,y辆车,依题意得: ,故选B.
【点睛】本题考查了二元一次方程组的实际应用,解决问题的关键是找出题中等量关系.
7.(2020·浙江宁波·中考真题)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )
A. B. C. D.
【答案】A
【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:绳子=木条-1,据此列出方程组即可.
【解析】解:设木条长x尺,绳子长y尺,那么可列方程组为:,故选:A.
【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.
题型6.最值(范围)问题
1.(2020·四川攀枝花·中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.
【答案】33
【分析】先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.
【解析】解:设x人进公园,若购满40张票则需要:40×(5-1)=40×4=160(元),
故5x>160时,解得:x>32,∴当有32人时,购买32张票和40张票的价格相同,
则再多1人时买40张票较合算;∴32+1=33(人);
则至少要有33人去世纪公园,买40张票反而合算.故答案为:33.
【点睛】此题主要考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.
2.(2020·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:
(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;
(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;
(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.
若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.
【答案】6
【分析】根据题中给出阅读过《三国演义》的人数,则先代入条件(3)可得出阅读过《西游记》的人数的取值范围,然后再根据条件(1)和(2)再列出两个不等式,得出阅读过《水浒传》的人数的取值范围,即可得出答案.
【解析】解:设阅读过《西游记》的人数是,阅读过《水浒传》的人数是,(均为整数)
依题意可得:且均为整数 可得:,最大可以取6;故答案为6.
【点睛】本题考查不等式的实际应用,注意题中的两个量都必须取整数是本题做题关键,求的最大值,则可通过题中不等关系得出是小于哪个数的,然后取小于这个数的最大整数即可.
3.(2019·湖南常德·中考真题)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为( )
A. B. C. D.
【答案】B
【分析】根据三人说法都错了得出不等式组解答即可.
【解析】根据题意可得:,可得:, ∴故选B.
【点睛】此题考查一元一次不等式组的应用,关键是根据题意得出不等式组解答.
4.(2020·广西中考真题)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
【答案】(1)每副围棋18元,则每副象棋10元;(2)该校最多可再购买25副围棋.
【分析】(1)设每副围棋x元,则每副象棋(x﹣8)元,根据420元购买象棋数量=756元购买围棋数量列出方程并解答;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意列出不等式并解答.
【解析】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,
根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.
答:每副围棋18元,则每副象棋10元;
(2)设购买围棋m副,则购买象棋(40﹣m)副,
根据题意,得18m+10(40﹣m)≤600.解得m≤25,故m最大值是25.
答:该校最多可再购买25副围棋.
【点睛】本题考查的是分式方程的应用,一元一次不等式的应用,掌握以上知识是解题的关键.
5.(2020·湖南娄底·中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶.
求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?
【答案】(1)该校购进洗手液120瓶,购进84消毒液280瓶;(2)最多能买洗手液25瓶.
【分析】(1)设购进洗手液x瓶,则购进84消毒液为瓶,根据题意得到一元一次方程,故可求解;(2)设最多能购买洗手液a瓶,根据题意得到不等式,故可求解.
【解析】解:(1)设购进洗手液x瓶,则购进84消毒液为瓶
依题意得: 解得
答:该校购进洗手液120瓶,购进84消毒液280瓶.
(2)设最多能购买洗手液a瓶 解得
答:最多能买洗手液25瓶.
【点睛】此题主要考查一元一次方程与不等式的应用,解题的关键是根据题意找到等量关系或不等关系列式求解.
6.(2020·江苏常州·中考真题)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?
【答案】(1)每千克苹果售价8元,每千克梨6千克;(2)最多购买5千克苹果
【分析】(1)设每千克苹果售价x元,每千克梨y千克,由题意列出x、y的方程组,解之即可;
(2)设购买苹果a千克,则购买梨(15-a)千克,由题意列出a的不等式,解之即可解答.
【解析】(1)设每千克苹果售价x元,每千克梨y千克,由题意,
得:,解得:,
答:每千克苹果售价8元,每千克梨6千克,
(2)设购买苹果a千克,则购买梨(15-a)千克,由题意,
得:8a+6(15-a)≤100,解得:a≤5,∴a最大值为5,
答:最多购买5千克苹果.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答的关键是认真审题,分析相关信息,正确列出方程组和不等式.
题型7.其他问题
1.(2020·浙江金华·中考真题)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x,则列出方程正确的是( )
A. B.
C. D.
【答案】D
【分析】直接利用表示十位数的方法进而得出等式即可.
【解析】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.
【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.
2.(2020·湖北省直辖县级单位·中考真题)篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.
【答案】9
【分析】设该对胜x场,则负14-x场,然后根据题意列一元一次方程解答即可.
【解析】解:设该对胜x场 由题意得:2x+(14-x)=23,解得x=9.故答案为9.
【点睛】本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.
3.(2020·湖南中考真题)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次.
【答案】4
【分析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x和y的二元一次方程组,求解即可.
【解析】解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:
,整理得:,解得:.故答案为:4.
【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列出方程组求解.
4.(2020·重庆中考真题)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.
【答案】
【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.
【解析】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为m,设7月份外卖还需增加的营业额为x.
∵7月份摆摊的营业额是总营业额的,且7月份的堂食、外卖营业额之比为8:5,
∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,
∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,
由题意可知: ,解得: ,∴,故答案为:.
【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.
5.(2020·四川攀枝花·中考真题)课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?
【答案】48人
【分析】设这些学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的少2组,根据此列方程求解.
【解析】解:设这些学生共有x人,根据题意,得 解得x=48.
答:这些学生共有48人.
【点睛】此题考查的知识点是一元一次方程的应用,其关键是找出等量关系及表示原来和后来各多少组,难度一般.
6.(2020·湖南益阳·中考真题)“你怎么样,中国便是怎么样:你若光明,中国便不黑暗”。年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城。针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有人不能到厂生产,为了应对疫情,已复产的工人加班生产,由原来每天工作小时增加到小时,每小时完成的工作量不变原来每天能生产防护服套,现在每天能生产防护服套.
(1)求原来生产防护服的工人有多少人?
(2)复工天后,未到的工人同时到岗加入生产,每天生产时间仍然为小时公司决定将复工后生产的防护服套捐献给某地,则至少还需要生产多少天才能完成任务?
【答案】(1)20;(2)8
【分析】(1)设原来生产防护服的工人有人,每小时完成的工作量为套,根据题意列出方程组,求解即可.(2)求出10天后,还剩余多少防护服没生产,根据(1)求出复工后每天的生产数量,相除即可得出结果.
【解析】(1)设原来生产防护服的工人有人,每小时完成的工作量为套,
根据原来每天工作小时,每天能生产防护服套,得.
根据现在每天工作小时,每天能生产防护服套,得.
联立方程,得∴得
解得=20,=5.经检验x=20,y=5是原方程的解 即原来生产防护服的工人有20人.
(2)复工10天,生产 套,剩余套.
由(1)可知:原来生产防护服的工人有20人,每小时完成的工作量为5套.
由题意知:10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.
则每天生产套.需要天.
【点睛】本题主要考查函数的性质及整式的乘除,熟练掌握函数的性质及整式的乘除是解题的关键.
7.(2020·湖北黄冈·中考真题)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?
【答案】每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元
【分析】根据题意列出二元一次方程组解出即可.
【解析】解:设每盒羊角春牌绿茶x元,每盒九孔牌藕粉y元,依题意可列方程组:
解得:
答:每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元.
【点睛】本题考查二元一次方程组的应用,关键在于理解题意找出等量关系.
8.(2020·江西中考真题)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.
(1)求笔记本的单价和单独购买一支笔芯的价格;
(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.
【答案】(1)5元,3元;(2)当两人共同购买笔芯,享受整盒购买的优惠时,能让两人既买到各自的文具又都买到小工艺品.
【分析】(1)根据小贤买3支笔芯,2本笔记本花费19元,可知等量关系:笔芯的单价×3+笔记本单价×2=小贤花费金额,同样可得小艺的等量关系,这两个等量关系可列方程组解答;
(2)小贤买3支笔芯,小艺4支笔芯,凑起来即为一盒,由题目已知整盒买比单支买每支可优惠0.5元,可知优惠5元,再加上小贤剩余两元即可让两人既买到各自的文具,又都买到小工艺品.
【解析】(1)设单独购买一支笔芯的价格为x元,一本笔记本的价格为y元,
有,解得;故笔记本的单价为5元,单独购买一支笔芯的价格为3元.
(2)两人共有金额19+26+2=47元,
若两人共购买10支笔芯(一盒),3本笔记本,由题目已知整盒买比单支买每支可优惠0.5元,
故两人买到各自的文具需要花费10×2.5+3×5=40(元),剩余47-40=7(元),可购买两件单价为3元的小工艺品;故只有当两人一同购买笔芯,享受整盒购买优惠,即可能让他们既买到各自的文具,又都买到小工艺品.
【点睛】(1)本题主要考查了二元一次方程组的求解,其中根据题目信息找到等量关系,;列出方程组是解题的关键;(2)本题主要是对题目中关键信息的理解以及应用,其中观察到整盒购买享受优惠是成功让两人既买到各自的文具,又都买到小工艺品的关键.
题型8.综合类应用题
(1).一元一次方程(组)与不等式结合
1.(2020·湖南长沙·中考真题)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:
第一批
第二批
A型货车的辆数(单位:辆)
1
2
B型货车的辆数(单位:辆)
3
5
累计运送货物的顿数(单位:吨)
28
50
备注:第一批、第二批每辆货车均满载
(1)求A,B两种型号货车每辆满载分别能运多少吨生活物资;(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A型号货车,试问至少还需联系多少辆B型号货车才能一次性将这批生活物资运往目的地.
【答案】(1)A,B两种型号货车每辆满载分别能运10吨,6吨生活物资;(2)6.
【分析】(1)设A,B两种型号货车每辆满载分别能运x,y吨生活物资,根据条件建立方程组求出其解即可;(2)设还需联系m辆B型号货车才能一次性将这批生活物资运往目的地,根据题中的不等关系列出不等式解答即可.
【解析】解:(1)设A,B两种型号货车每辆满载分别能运x,y吨生活物资
依题意,得解得
∴A,B两种型号货车每辆满载分别能运10吨,6吨生活物资
(2)设还需联系m辆B型号货车才能一次性将这批生活物资运往目的地
依题意,得.解得m5.4又m为整数,∴m最小取6
∴至少还需联系6辆B型号货车才能一次性将这批生活物资运往目的地.
【点睛】本题考查了列二元一次方程组解实际问题的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
2.(2020·山东菏泽·中考真题)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买根跳绳和个毽子共需元;购买根跳绳和个毽子共需元.(1)求购买一根跳绳和一个毽子分别需要多少元;
(2)某班需要购买跳绳和毽子的总数量是,且购买的总费用不能超过元;若要求购买跳绳的数量多于根,通过计算说明共有哪几种购买跳绳的方案.
【答案】(1)购买一根跳绳需要6元,一个毽子需要4元;(2)方案一:购买跳绳21根;方案二:购买跳绳22根
【分析】(1)设购买一根跳绳需要x元,一个毽子需要y元,依题意列出二元一次方程组解之即可;
(2)设学校购进跳绳m根,则购进毽子(54-m)根,根据题意列出不等式解之得m的范围,进而可判断购买方案.
【解析】(1)设购买一根跳绳需要x元,一个毽子需要y元,
依题意,得:,解得:,
答:购买一根跳绳需要6元,一个毽子需要4元;
(2)设学校购进跳绳m根,则购进毽子(54-m)根,
根据题意,得:,解得:m≤22,
又m﹥20,且m为整数,∴m=21或22,
∴共有两种购买跳绳的方案,方案一:购买跳绳21根;方案二:购买跳绳22根.
【点睛】本题考查二元一次方程组以及一元一次不等式的应用,根据题意正确列出方程式及不等式是解答的关键.
3.(2020·江苏常州·中考真题)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?
【答案】(1)每千克苹果售价8元,每千克梨6千克;(2)最多购买5千克苹果
【分析】(1)设每千克苹果售价x元,每千克梨y千克,由题意列出x、y的方程组,解之即可;
(2)设购买苹果a千克,则购买梨(15-a)千克,由题意列出a的不等式,解之即可解答.
【解析】(1)设每千克苹果售价x元,每千克梨y千克,由题意,得:,解得:,
答:每千克苹果售价8元,每千克梨6千克,
(2)设购买苹果a千克,则购买梨(15-a)千克,由题意,
得:8a+6(15-a)≤100,解得:a≤5,∴a最大值为5,
答:最多购买5千克苹果.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答的关键是认真审题,分析相关信息,正确列出方程组和不等式.
4.(2020·辽宁抚顺·中考真题)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.
(1)求每本甲种词典和每本乙种词典的价格分别为多少元?
(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?
【答案】(1)每本甲种词典的价格为70元,每本乙种词典的价格50元;(2)最多可购买甲种词典5本
【分析】(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设学校购买甲种词典m本,则购买乙种词典(30-m)本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【解析】(1)设每本甲种词典的价格为元,每本乙种词典的价格为元,根据题意,得
解得
答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.
(2)设学校计划购买甲种词典本,则购买乙种词典本,根据题意,得
解得答:学校最多可购买甲种词典5本.
【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
5.(2020·宁夏中考真题)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;
(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?
【答案】(1)购买A、B两种防疫物品每件分别为16元和4元;(2)最多购买A种防疫物品383件.
【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设A种奖品购买a件,则B种奖品购买(600-a)件,根据总价=单价×购买数量结合总费用不超过7000元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.
【解析】(1)设购买A、B两种防疫物品每件分别为x元和y元,根据题意,得:
解得:答:购买A、B两种防疫物品每件分别为16元和4元.
(2)设购买A种防疫物品a件,根据题意,得:
解得,,因为a取最大正整数,所以
答:最多购买A种防疫物品383件.
【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,找出关于a的一元一次不等式.
6.(2019·浙江温州·中考真题)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
【答案】(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.
【分析】(1)设该旅行团中成人人,少年人,根据儿童10人,成人比少年多12人列出方程组求解即可;
(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可;
②分情况讨论,分别求出在a的不同取值范围内b的最大值,得到符合题意的方案,并计算出所需费用,比较即可.
【解析】解:(1)设该旅行团中成人人,少年人,根据题意,得,解得.
答:该旅行团中成人17人,少年5人.
(2)∵①成人8人可免费带8名儿童,
∴所需门票的总费用为:(元).
②设可以安排成人人、少年人带队,则.
当时,
(ⅰ)当时,,∴,∴,此时,费用为1160元.
(ⅱ)当时,,∴,∴,此时,费用为1180元.
(ⅲ)当时,,即成人门票至少需要1200元,不合题意,舍去.
当时,
(ⅰ)当时,,∴,∴,此时,费用为1200元.
(ⅱ)当时,,∴,
∴,此时,不合题意,舍去.
(ⅲ)同理,当时,,不合题意,舍去.
综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.
【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.
7.(2020·黑龙江·中考真题)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需要136元;若购买2个大地球仪和1个小地球仪需要132元.
(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪.
【答案】(1)每个大地球仪52元,每个小地球仪28元;(2)昌云中学最多可以购买5个大地球仪.
【分析】(1)设每个大地球仪x元,每个小地球仪y元,根据题意列出方程组求解即可;
(2)设昌云中学可以购买m个大地球仪,则购买小地球仪(30-m)个,根据题意列出不等式求解即可.
【解析】解:(1)设每个大地球仪x元,每个小地球仪y元,
由题意可得,解得:,
答:每个大地球仪52元,每个小地球仪28元;
(2)设昌云中学可以购买m个大地球仪,则购买小地球仪(30-m)个,
根据题意得52m+28(30-m)≤960解得m≤5∴昌云中学最多可以购买5个大地球仪.
【点睛】本题考查了二元一次方程组的实际应用和一元一次不等式的实际应用,根据题意列出式子是解题关键.
(2).分式方程与不等式结合
1.(2020·贵州黔南·中考真题)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.
(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?
(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?
【答案】(1)甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)购买了20瓶乙品牌消毒剂
【分析】(1)设甲品牌每瓶x元,则乙品牌每瓶3x-50元,根据题意列出方程,解出x即可;
(2)设购买了乙品牌a瓶,则购买了甲品牌40-a瓶,,根据题意列出方程,解出a即可.
【解析】(1)解:设甲品牌每瓶x元,则乙品牌每瓶3x-50元,
根据题意得:,解得:x=30,则3x-50=3×30-50=40,
则甲品牌消毒剂每瓶的价格为30元,乙品牌消毒剂每瓶的价格为40元;
(2)设购买了乙品牌a瓶,则购买了甲品牌40-a瓶,
根据题意得:,解得:a=20,则购买了20瓶乙品牌消毒剂.
【点睛】本题是对分式方程运用的考查,准确根据题意列出方程是解决本题的关键.
2.(2020·广西中考真题)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
【答案】(1)每副围棋18元,则每副象棋10元;(2)该校最多可再购买25副围棋.
【分析】(1)设每副围棋x元,则每副象棋(x﹣8)元,根据420元购买象棋数量=756元购买围棋数量列出方程并解答;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意列出不等式并解答.
【解析】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,
根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.
答:每副围棋18元,则每副象棋10元;
(2)设购买围棋m副,则购买象棋(40﹣m)副,
根据题意,得18m+10(40﹣m)≤600.解得m≤25,故m最大值是25.
答:该校最多可再购买25副围棋.
【点睛】本题考查的是分式方程的应用,一元一次不等式的应用,掌握以上知识是解题的关键.
3.(2020·辽宁铁岭·中考真题)某中学为了创设“书香校园”,准备购买两种书架,用于放置图书.在购买时发现,种书架的单价比种书架的单价多20元,用600元购买种书架的个数与用480元购买种书架的个数相同.(1)求两种书架的单价各是多少元?(2)学校准备购买两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个种书架?
【答案】(1)购买种书架需要100元,种书架需要80元;(2)最多可购买10个种书架.
【分析】(1)根据题意以书架个数为等量关系列出分式方程求解即可;
(2)根据题意用代数式表示总费用,小于等于1400,列出不等式求解即可.
【解析】解:(1)设种书架的单价为元,根据题意,得 解得
经检验:是原分式方程的解
答:购买种书架需要100元,种书架需要80元.
(2)设准备购买个种书架,根据题意,得 解得
答:最多可购买10个种书架.
【点睛】本题主要考查分式方程的应用、一元一次不等式的应用,解题关键在于根据题意列出方程和不等式.
4.(2020·内蒙古赤峰·中考真题)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?
(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?
【答案】(1)甲工程队每天修路100米,乙工程队每天修路50米;(2)至少安排乙队施工32天.
【分析】(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,根据甲工程队修500米公路需要的天数=乙工程队修500米公路需要的天数-5即可列出分式方程,解方程并检验后即得答案;
(2)设安排乙队施工y天,根据甲工程队施工费用+乙工程队施工费用≤40万元即可列出不等式,解不等式即可求出y的范围,进而可得结果.
【解析】解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,
根据题意,得,解得:x=50,经检验:x=50是所列方程的根,2x=100.
答:甲工程队每天修路100米,乙工程队每天修路50米.
(2)设安排乙队施工y天,根据题意,得,
解得:,所以y最小为32.答:至少安排乙队施工32天.
【点睛】本题考查了分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等和不等关系是解题的关键.
5.(2020·湖南永州·中考真题)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?
【答案】(1)一次性医用口罩和N95口单价分别是2元,12元;(2)药店购进一次性医用口罩至少1400只
【分析】(1)设一次性医用口罩单价为x元,则N95口罩的单价为元,列分式方程求解即可;
(2)设购进一次性医用口罩y只,根据题意列不等式求解即可.
【解析】解:(1)设一次性医用口罩单价为x元,则N95口罩的单价为元
由题意可知,,解方程 得. 经检验是原方程的解,
当时,.
答:一次性医用口罩和N95口单价分别是2元,12元.
(2)设购进一次性医用口罩y只
根据题意得, 解不等式得.
答:药店购进一次性医用口罩至少1400只.
【点睛】本题考查的是分式方程的应用,一元一次不等式的应用,掌握列分式方程与列不等式是解题的关键.
6.(2019·湖南衡阳·中考真题)某商店购进、两种商品,购买1个商品比购买1个商品多花10元,并且花费300元购买商品和花费100元购买商品的数量相等.(1)求购买一个商品和一个商品各需要多少元;(2)商店准备购买、两种商品共80个,若商品的数量不少于商品数量的4倍,并且购买、商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
【答案】(1)购买一个商品需要15元,购买一个商品需要5元;(2)商店有2种购买方案,方案①:购进商品65个、商品15个;方案②:购进商品64个、商品16个.
【分析】(1)设购买一个商品需要元,则购买一个商品需要元,根据数量=总价÷单价结合花费300元购买商品和花费100元购买商品的数量相等,即可得出关于的分式方程,解之经检验后即可得出结论;(2)设购买商品个,则购买商品个,根据商品的数量不少于商品数量的4倍并且购买、商品的总费用不低于1000元且不高于1050元,即可得出关于的一元一次不等式组,解之即可得出的取值范围,再结合为整数即可找出各购买方案.
【解析】解:(1)设购买一个商品需要元,则购买一个商品需要元,
依题意,得:,解得:,
经检验,是原方程的解,且符合题意,∴.
答:购买一个商品需要15元,购买一个商品需要5元.
(2) 设购买商品个,则购买商品个,
依题意,得:,解得:.
∵为整数,∴或16.∴商店有2种购买方案,方案①:购进商品65个、商品15个;方案②:购进商品64个、商品16个.
【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
(3)、方程(组)、不等式及一次函数结合
1.(2020·山东济南·中考真题)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格
进价(元/部)
售价(元/部)
A
3000
3400
B
3500
4000
某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.
(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?
【答案】(1)营业厅购进A、B两种型号手机分别为6部、4部;(2)营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元
【分析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求得营业厅购进A、B两种型号手机各多少部;(2)根据题意,可以得到利润与A种型号手机数量的函数关系式,然后根据B型手机的数量不多于A型手机数量的2倍,可以求得A种型号手机数量的取值范围,再根据一次函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少.
【解析】解:(1)设营业厅购进A、B两种型号手机分别为a部、b部,
,解得,,
答:营业厅购进A、B两种型号手机分别为6部、4部;
(2)设购进A种型号的手机x部,则购进B种型号的手机(30﹣x)部,获得的利润为w元,
w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,
∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,
∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,
∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,
答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.
【点睛】本题考查了二元一次方程组的应用,以及一次函数的应用,熟练掌握一次函数的性质是解答本题的关键.
2.(2020·湖北武汉·初一期末)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
甲型客车
乙型客车
载客量(人/辆)
35
30
租金(元/辆)
400
320
学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;
(3)学校共有几种租车方案?最少租车费用是多少?
【答案】(1)参加此次研学活动的老师有16人,学生有234人.(2)8;(3)学校共有4种租车方案,最少租车费用是2720元.
【分析】(1)设参加此次研学活动的老师有人,学生有人,根据题意列出方程组即可求解;
(2)利用租车总辆数=总人数÷35,再结合每辆车上至少要有2名老师,即可求解;
(3)设租35座客车辆,则需租30座的客车辆,根据题意列出不等式组即可求解.
【解析】解:(1)设参加此次研学活动的老师有人,学生有人,
依题意,得:,解得:.
答:参加此次研学活动的老师有16人,学生有234人.
(2)(辆)(人),(辆),
租车总辆数为8辆.故答案为8.
(3)设租35座客车辆,则需租30座的客车辆,
依题意,得:,解得:.
为正整数,,共有4种租车方案.
设租车总费用为元,则,
,的值随值的增大而增大,
当时,取得最小值,最小值为2720.
学校共有4种租车方案,最少租车费用是2720元.
【点睛】本题考查的是二元一次方程组和不等式组的实际应用,熟练掌握两者是解题的关键.
3.(2020·福建中考真题)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.
(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.
【答案】(1)甲特产15吨,乙特产85吨;(2)26万元.
【分析】(1)设这个月该公司销售甲特产吨,则销售乙特产吨,根据题意列方程解答;
(2)设一个月销售甲特产吨,则销售乙特产吨,且,根据题意列函数关系式,再根据函数的性质解答.
【解析】解:(1)设这个月该公司销售甲特产吨,则销售乙特产吨,
依题意,得,解得,则,
经检验符合题意,所以,这个月该公司销售甲特产15吨,乙特产85吨;
(2)设一个月销售甲特产吨,则销售乙特产吨,且,
公司获得的总利润,
因为,所以随着的增大而增大,
又因为,所以当时,公司获得的总利润的最大值为26万元,
故该公司一个月销售这两种特产能获得的最大总利润为26万元.
【点睛】此题考查一元一次方程的实际应用、一次函数的性质等基础知识,考查运算能力、应用意识,考查函数与方程思想,正确理解题意,根据问题列方程或是函数关系式解答问题.
4.(2020·广东深圳·)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?
【答案】(1)肉粽得进货单价为10元,蜜枣粽得进货单价为4元;(2)第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元.
【分析】(1)设肉粽和蜜枣粽的进货单价分别为x、y元,根据题意列方程组解答;
(2)设第二批购进肉粽t个,第二批粽子得利润为W,列出函数关系式再根据函数的性质解答即可.
【解析】(1)设肉粽和蜜枣粽的进货单价分别为x、y元,则根据题意可得:
.解此方程组得:.
答:肉粽得进货单价为10元,蜜枣粽得进货单价为4元;
(2)设第二批购进肉粽t个,第二批粽子得利润为W,则 ,
∵k=2>0,∴W随t的增大而增大,由题意,解得,
∴当t=200时,第二批粽子由最大利润,最大利润,
答:第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元.
【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,一次函数解决实际问题,一次函数的性质,正确理解题意列出方程组或函数、不等式解决问题是关键.
5.(2020·山东济宁·中考真题)为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?
【答案】(1)1辆大货车和1辆小货车一次可以分别运输150箱,100箱物资;(2)共有3种方案,6辆大货车和6辆小货车,7辆大货车和5辆小货车;8辆大货车和4辆小货车,当安排6辆大货车和6辆小货车时,总费用最少,为48000元.
【分析】(1)设1辆大货车和1辆小货车一次可以分别运输x箱,y箱物资,根据题意列出二元一次方程组,求解即可;(2)设安排m辆大货车,则小货车(12-m)辆,总费用为W,根据运输物资不少于1500箱,且总费用小于54000元分别得出不等式,求解即可得出结果.
【解析】解:(1)设1辆大货车和1辆小货车一次可以分别运输x箱,y箱物资,
根据题意,得:,解得:,
答:1辆大货车和1辆小货车一次可以分别运输150箱,100箱物资;
(2)设安排m辆大货车,则小货车(12-m)辆,总费用为W,
则150m+(12-m)×100≥1500,解得:m≥6,
而W=5000m+3000×(12-m)=2000m+36000<54000,
解得:m<9,则6≤m<9,
则运输方案有3种:6辆大货车和6辆小货车;7辆大货车和5辆小货车;8辆大货车和4辆小货车;
∵2000>0,∴当m=6时,总费用最少,且为2000×6+36000=48000元.
∴共有3种方案,当安排6辆大货车和6辆小货车时,总费用最少,为48000元.
【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的实际应用,解题的关键是理解题意,找到等量关系和不等关系,列出式子.
6.(2020·四川中考真题)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.
①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.
【答案】(1)甲每天需工程费2000元、乙工程队每天需工程费1500元;(2)①甲乙两工程队分别工作的天数共有7种可能;②当甲平整52天,乙平整2天时,费用最低,最低费用为107000元
【分析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②把问题转化为不等式解决即可.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,利用函数的性质解答即可.
【解析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,
由题意,=,解得x=2000,经检验,x=2000是分式方程的解.
答:甲每天需工程费2000元、乙工程队每天需工程费1500元.
故答案为甲每天需工程费2000元、乙工程队每天需工程费1500元;
(2)①设甲平整x天,则乙平整y天.
由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②,由①得到y=80﹣1.5x③,
把③代入②得到,2000x+1500(80﹣1.5x)≤110000,解得,x≥40,
∵y>0,∴80﹣1.5x>0,x<53.3,∴40≤x<53.3,
∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x=50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.故答案为共有7中可能;
②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,
∵﹣250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).
答:最低费用为107000元.故答案为:最低费用为107000元.
【点睛】本题考查了分式方程的实际应用,一次函数的实际应用,是利润问题中的综合题,考查较为全面,对于一次函数而言,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
7.(2020·广东中考真题)某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米,建类摊位每平方米的费用为40元,建类摊位每平方米的费用为30元,用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的.(1)求每个,类摊位占地面积各为多少平方米?(2)该社拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求建造这90个摊位的最大费用.
【答案】(1)5平方米;3平方米 (2)10520元
【分析】(1)设类摊位占地面积平方米,则类占地面积平方米,根据同等面积建立A类和B类的倍数关系列式即可;(2)设建类摊位个,则类个,设费用为,由(1)得A类和B类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.
【解析】解:(1)设每个类摊位占地面积平方米,则类占地面积平方米
由题意得 解得, ∴,经检验为分式方程的解
∴每个类摊位占地面积5平方米,类占地面积3平方米
(2)设建类摊位个,则类个,费用为 ∵ ∴
,∵110>0,∴z随着a的增大而增大,
又∵a为整数,∴当时z有最大值,此时
∴建造90个摊位的最大费用为10520元
【点睛】本题考查一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.
8.(2020·湖北孝感·中考真题)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知乙产品的售价比甲产品的售价多5元,丙产品的售价是甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?
(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买农产品最少要花费多少元?
【答案】(1)甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)按此方案购买农产品最少要花费300元.
【分析】(1)设甲产品的售价为元,先表示出乙产品的售价和丙产品的售价,再根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”建立方程,然后求解即可得;
(2)设的甲、乙、丙三种农产品搭配中,丙种农产品有,先求出乙种农产品的数量和甲种农产品的数量,再根据题干三种农产品间的数量关系列出不等式求出m的取值范围,然后根据(1)的结论得出所需费用关于m的函数关系式,最后利用一次函数的性质即可得.
【解析】(1)设甲产品的售价为元,则乙产品的售价为元,丙产品的售价为元
由题意得: 解得:
经检验,是所列分式方程的解,也符合题意 则,
答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;
(2)设的甲、乙、丙三种农产品搭配中,丙种农产品有,则乙种农产品有,甲种农产品有 由题意得: 解得
设按此销售方案购买农产品所需费用元 则
∵在范围内,随的增大而增大
∴当时,取得最小值,最小值为(元)
答:按此方案购买农产品最少要花费300元.
【点睛】本题考查了分式方程的实际应用、一次函数的实际应用、一元一次不等式的应用等知识点,依据题意,正确列出方程和函数的解析式是解题关键.
9.(2020·黑龙江牡丹江·中考真题)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?
(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?
【答案】(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有3个,样品中A种书包有2个,B种书包有2个.
【分析】(1)设A种书包每个进价是x元,根据题意列出方程,求解即可;
(2)设购进A种书包m个,根据题意得出不等式70m+90(2m+5)≤5450,求出m,再结合A种书包不少于18个,得出m的取值范围,从而可得方案;
(3)根据获利最大得到购进A种书包20个,则B种书包45个,设赠送的书包中,A种书包s个,样品中有t个A种书包,则B种书包5-s个,样品中有4-t个B种书包,根据获利1370元得到方程,再求出符合题意的整数解即可.
【解析】解:(1)设A种书包每个进价是x元,则B种书包每个进价是x+20元,
由题意可得:,解得:x=70,经检验:x=70是原方程的解,70+20=90元,
∴A,B两种书包每个进价各是70元和90元;
(2)设购进A种书包m个,则B种书包2m+5个,m≥18,
根据题意得:70m+90(2m+5)≤5450,解得:m≤20,则18≤m≤20,∴共有3种方案:
购进A种书包18个,则B种书包41个;
购进A种书包19个,则B种书包43个;
购进A种书包20个,则B种书包45个;
(3)设获利W元,则W=(90-70)m+(130-90)(2m+5)=100m+200,
∵100>0,∴W随m的增大而增大,则当m=20时,W最大,
则购进A种书包20个,则B种书包45个,
设赠送的书包中,A种书包s个,样品中有t个A种书包,
则B种书包5-s个,样品中有4-t个B种书包,
则此时W=(20-s-t)×(90-70)+t(90×0.5-70)+(45-5+s-4+t)×(130-90)+(4-t)(130×0.5-90)-70s-(5-s)×90=1370,整理得:2s+t=4,即,
根据题意可得两种书包都需要有样品,则t≠0且t≠4,∴t=2,s=1,
∴赠送的书包中,A种书包有1个,B种书包有3个,样品中A种书包有2个,B种书包有2个.
【点睛】本题考查了分式方程,一元一次不等式,二元一次方程的实际应用,难度较大,解题时务必理解题意,得到相应的等量关系和不等关系.
10.(2020·湖北恩施·中考真题)某校足球队需购买、两种品牌的足球.已知品牌足球的单价比品牌足球的单价高20元,且用900元购买品牌足球的数量用720元购买品牌足球的数量相等.
(1)求、两种品牌足球的单价;
(2)若足球队计划购买、两种品牌的足球共90个,且品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买品牌足球个,总费用为元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
【答案】(1)购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;
(2)该队共有6种购买方案,购买60个A品牌30个B 品牌的总费用最低,最低费用是8400元.
【分析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x-20)元,根据用900元购买品牌足球的数量用720元购买品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,根据总价=单价×数量结合总价不超过8500元,以及品牌足球的数量不小于品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.
【解析】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x-20)元,根据题意,得解得:x=100经检验x=100是原方程的解x-20=80
答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元.
(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,则W=100m+80(90-m)=20m+7200
∵品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.
∴解不等式组得:60≤m≤65
所以,m的值为:60,61,62,63,64,65即该队共有6种购买方案,
当m=60时,W最小 m=60时,W=20×60+7200=8400(元)
答:该队共有6种购买方案,购买60个A品牌30个B 品牌的总费用最低,最低费用是8400元.
【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
知识框架:
基础知识点:
知识点1-1一元一次方程(二元一次方程组)的应用
1.列方程(组)解应用题的一般步骤
(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);
(5)检验结果;(6)作答(不要忽略未知数的单位名称).
2.一元一次方程(二元一次方程组)常见的应用题型
(1)销售打折问题:利润售价-成本价;利润率=×100%;售价=标价×折扣;销售额=售价×数量.
(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.
(3)工程问题:工作量=工作效率×工作时间.
(4)行程问题:路程=速度×时间.
(5)相遇问题:全路程=甲走的路程+乙走的路程.
(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.
(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.
(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.
知识点1-2 一元一次不等式(组)的应用
1.列方程(组)解应用题的一般步骤
(1)审题;(2)设出未知数;(3)列出含未知数的不等式(组);(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).
2.求解此类题目的难点是建立“不等式(组)模型”,通过求解不等式(组)的解集并与实际相结合即可.
知识点1-3 分式方程的应用
1.列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.
2. 分式方程的应用主要涉及工程问题、行程问题、销售问题等.
每个问题中涉及到三个量的关系,如:工作时间=,时间=等.
重难点题型
题型1.销售问题
(1)打折销售
1.(2020·黑龙江牡丹江·)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.
【答案】八
【分析】打折销售后要保证打折后利率为20%,因而可以得到不等关系为:利润率=20%,设可以打x折,根据不等关系列出不等式求解即可.
【解析】解:设应打x折,则根据题意得:(180×x×10%-120)÷120=20%,
解得:x=8.故商店应打八折.故答案为:八.
【点睛】本题考查一元一次方程的实际应用,解题关键是读懂题意,找到符合题意的等量关系式,同时要注意掌握利润率的计算方法.
2.(2020·辽宁朝阳·中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于,则这种品牌衬衫最多可以打几折?( )
A.8 B.6 C.7 D.9
【答案】B
【分析】根据售价-进价=利润,利润=进价利润率可得不等式,解之即可.
【解析】设可以打x折出售此商品,
由题意得:240,解得x6,故选:B
【点睛】此题考查了销售问题,注意销售问题中量之间的数量关系是列不等式的关键.
3.(2020·山西中考真题)年月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满元立减元(每次只能使用一张)某品牌电饭煲按进价提高后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金元.求该电饭煲的进价.
【答案】该电饭煲的进价为元
【分析】根据满元立减元可知,打八折后的总价减去128元是实际付款数额,即可列出等式.
【解析】解:设该电饭煲的进价为元 根据题意,得
解,得.答;该电饭煲的进价为元
【点睛】本题主要考察了打折销售知识点,准确找出它们之间的关系列出等式方程是解题关键.
(2)分段计费
1.(2020·江苏徐州·中考真题)本地某快递公司规定:寄件不超过千克的部分按起步价计费;寄件超过千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:
收费标准
目的地
起步价(元)
超过千克的部分(元千克)
上海
北京
实际收费
目的地
质量
费用(元)
上海
北京
求,的值.
【答案】,
【分析】根据题意“寄件不超过千克的部分按起步价计费;寄件超过千克的部分按千克计费”列出方程组求解即可得到结果.
【解析】根据题意得:,解得:,∴,.
【点睛】本题考查了由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.
2.(2020·浙江绍兴·中考真题)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.
【答案】100或85.
【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.
【解析】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;
②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.
故所购商品的标价是100或85元.故答案为100或85.
【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.
(3)正常销售
1.(2020·辽宁朝阳·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得( )
A. B.
C. D.
【答案】B
【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.
【解析】设班级共有x名学生,依据题意列方程得,故选:B.
【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.
2.(2020·江苏扬州·中考真题)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
进货单
商品
进价(元/件)
数量(件)
总金额(元)
甲
7200
乙
3200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
李阿姨:我记得甲商品进价比乙商品进价每件高50%.
王师傅:甲商品比乙商品的数量多40件.
请你求出乙商品的进价,并帮助他们补全进货单.
【答案】乙商品的进价40元/件;补全进货单见详解
【分析】设出乙的进货价为x,表示出乙的进货数量,表示出甲的进货数量与进货价,根据假的进货数量乘以进货价等于甲的总金额列出方程,解出方程即可.
【解析】解:设乙的进货价为x,则乙的进货数量为 件,
所以甲的数量为(+40)件,甲的进货价为x(1+50%)
可列方程为:x(1+50%)(+40)=7200
4800+60x=7200 60x=2400 解得:x=40.
经检验:x=40是原方程的解,所以乙的进价为40元/件.
答:乙商品的进价为40元/件.
,+40=120,x(1+50%)=60,
补全进货单如下表:
商品
进价(元/件)
数量(件)
总金额(元)
甲
60
120
7200
乙
40
80
3200
【点睛】本题考查的是分式方程的应用,通过题目给的条件,设出乙的进货价,表示出甲的数量与进货价,通过甲的进货价×甲的数量=甲的总金额,列出分式方程,解出答案,解答本题的关键在于表示出相关量,找出等量关系,列出方程.
3.(2020·吉林长春·中考真题)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?
【答案】2万斤
【分析】由题意设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,根据单价=总价÷数量结合今年每斤黑木耳的售价比去年增加了20元,即可得出关于x的分式方程,解之经检验后即可得出结论.
【解析】解:设该村企去年黑木耳的年销量为万斤 依题意得解得:
经检验是原方程的根,且符合题意.
答:该村企去年黑木耳的年销量为2万斤.
【点睛】本题考查分式方程的应用,根据题意找准等量关系,正确列出分式方程是解题的关键.
题型2.行程问题
1.(2020·湖北荆州·中考真题)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是( )
A.-=20 B.-=20 C.-= D.=
【答案】C
【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.
【解析】由题意可得,-=,故选:C.
【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.
2.(2020·四川绵阳·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )
A.1.2小时 B.1.6小时 C.1.8小时 D.2小时
【答案】C
【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.
【解析】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,
根据两人对话可知:甲的速度为km/h,乙的速度为km/h,
根据题意得:,解得:x1=1.8或x2=9,
经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故答案为:C.
【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.
3.(2020·广西中考真题)甲、乙两地相距,提速前动车的速度为,提速后动车的速度是提速前的倍,提速后行车时间比提速前减少,则可列方程为( )
A. B. C. D.
【答案】A
【分析】行驶路程都是600千米;提速前后行驶时间分别是:;因为提速后行车时间比提速前减少,所以,提速前的时间-提速后的时间=.
【解析】根据提速前的时间-提速后的时间=,可得
即故选:A
【点睛】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
4.(2020·吉林长春·中考真题)已知、两地之间有一条长240千米的公路.甲车从地出发匀速开往地,甲车出发两小时后,乙车从地出发匀速开往地,两车同时到达各自的目的地.两车行驶的路程之和(千米)与甲车行驶的时间(时)之间的函数关系如图所示.
(1)甲车的速度为_________千米/时,的值为____________.
(2)求乙车出发后,与之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.
【答案】(1)40,480;(2);(3)小时或小时
【分析】(1)根据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=240×2=480;(2)根据题意直接运用待定系数法进行分析解得即可;(3)由题意分两车相遇前与相遇后两种情况分别列方程解答即可.
【解析】解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;
(2)设与之间的函数关系式为,由图可知,函数图象过点,,
所以解得所以与之间的函数关系式为;
(3)两车相遇前:解得:
两车相遇后:解得:
答:当甲、乙两车相距100千米时,甲车行驶的时间是小时或小时.
【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
5.(2019·浙江台州·中考真题)一道来自课本的习题:
从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走,平路每小时走,下坡每小时走,那么从甲地到乙地需,从乙地到甲地需.甲地到乙地全程是多少?
小红将这个实际问题转化为二元一次方程组问题,设未知数,,已经列出一个方程,则另一个方程正确的是( )
A. B. C. D.
【答案】B
【分析】根据未知数,,从乙地到甲地需,即可列出另一个方程.
【解析】设从甲地到乙地的上坡的距离为,平路的距离为,已经列出一个方程,则另一个方程正确的是:.故选B.
【点睛】此题主要考查二元一次方程组的应用,解题的关键是等量关系列出方程.
6.(2020·宁夏中考真题)“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离与步行时间之间的函数关系式如图中折线段所示.
(1)小丽与小明出发_______相遇;(2)在步行过程中,若小明先到达甲地.
①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.
【答案】(1)30;(2)①小丽步行的速度为,小明步行的速度为;②点,点C表示:两人出发时,小明到达甲地,此时两人相距.
【分析】(1)直接从图像获取信息即可;(2)①设小丽步行的速度为,小明步行的速度为,且,根据图像和题意列出方程组,求解即可;②设点C的坐标为,根据题意列出方程解出x,再根据图像求出y即可,再结合两人的运动过程解释点C的意义即可.
【解析】(1)由图像可得小丽与小明出发30相遇,故答案为:30;
(2)①设小丽步行的速度为,小明步行的速度为,且,
则,解得:,
答:小丽步行的速度为,小明步行的速度为;
②设点C的坐标为,则可得方程,解得,
,∴点,
点C表示:两人出发时,小明到达甲地,此时两人相距.
【点睛】本题考查了二元一次方程组的实际应用,一元一次方程的实际应用,从图像获取信息是解题关键.
7.(2020·江苏泰州·中考真题)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线为全程的普通道路,路线包含快速通道,全程,走路线比走路线平均速度提高,时间节省,求走路线的平均速度.
【答案】75km/h
【分析】根据题意,设走线路A的平均速度为,则线路B的速度为,由等量关系列出方程,解方程即可得到答案.
【解析】解:设走线路A的平均速度为,则线路B的速度为,则
,解得:,检验:当时,,
∴是原分式方程的解;∴走路线的平均速度为:(km/h);
【点睛】本题考查分式方程的应用,以及理解题意的能力,解题的关键是以时间做为等量关系列方程求解.
题型3.工程问题
1.(2020·辽宁鞍山·中考真题)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是( )
A. B. C. D.
【答案】B
【分析】根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可.
【解析】解:根据题意得:,故选B.
【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.
2.(2020·内蒙古呼伦贝尔·中考真题)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做个零件,下列方程正确的是( )
A. B.
C. D.
【答案】A
【分析】设甲每天做x个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.
【解析】解:设甲每天做x个零件,根据题意得:,故选:A.
【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.
3.(2020·湖南长沙·中考真题)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得( )
A. B. C. D.
【答案】B
【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率,再结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程.
【解析】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,
依题意,得:.故选:B.
【点睛】本题考查了由实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.
4.(2020·湖北中考真题)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务若设原计划每周生产x万个口罩,则可列方程为( )
A. B.
C. D.
【答案】A
【分析】根据第一周之后,按原计划的生产时间=提速后生产时间+1,可得结果.
【解析】由题知: 故选:A.
【点睛】本题考查了分式方程的实际应用问题,根据题意列出方程式即可.
5.(2020·辽宁铁岭·中考真题)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工米,乙工程队每天施工米,根据题意,所列方程组正确的是( )
A. B.C. D.
【答案】D
【分析】根据“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”和“甲工程队每天比乙工程队多施工2米”可分别列出方程,联立即可.
【解析】解:依据题意:“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”可列方程,
“甲工程队每天比乙工程队多施工2米”可列方程,
故可列方程组:,故选:D.
【点睛】本题考查列二元一次方程组.能仔细读题,找出描述等量关系的语句是解题关键.
6.(2020·海南中考真题)某村经济合作社决定把吨竹笋加工后再上市销售,刚开始每天加工吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工吨,前后共用天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?
【答案】4天;2天
【分析】设改进加工方法前用了天,改进加工方法后用了天,根据“前后共用天完成,总共加工22吨” 这两个关键信息建立方程组即可求解.
【解析】解:设改进加工方法前用了天,改进加工方法后用了天,
则解得经检验,符合题意.
答:改进加工方法前用了天,改进加工方法后用了天.
【点睛】本题考查了二元一次方程组的解法及应用,找出等量关系,正确列出方程组是解决本题的关键.
7.(2020·辽宁大连·中考真题)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?
【答案】每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.
【分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车,列方程组求解.
【解析】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥, 由题意得,
, 整理得: 解得:.
答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.
【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
题型4.方案问题
1.(2020·黑龙江鹤岗·中考真题)学校计划用200元钱购买、两种奖品,种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案( )
A.2种 B.3种 C.4种 D.5种
【答案】B
【分析】设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为正整数可求出解.
【解析】设购买了种奖品个,种奖品个,根据题意得:,
化简整理得:,得,
∵,为非负整数,∴,,,∴有3种购买方案:
方案1:购买了种奖品0个,种奖品8个;
方案2:购买了种奖品5个,种奖品5个;
方案3:购买了种奖品10个,种奖品2个.故选:B.
【点睛】本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为非负整数确定出x,y的值.
2.(2020·黑龙江鸡西·中考真题)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用元钱购买、、三种奖品,种每个元,种每个元,种每个元,在种奖品不超过两个且钱全部用完的情况下,有多少种购买方案( )
A.种 B.种 C.种 D.种
【答案】D
【分析】设购买、、三种奖品分别为个,根据题意列方程得,化简后根据均为正整数,结合种奖品不超过两个分类讨论,确定解的个数即可.
【解析】解:设购买、、三种奖品分别为个,
根据题意列方程得,即,
由题意得均为正整数.①当z=1时,∴,
∴y分别取1,3,5,7,9,11,13,15共8种情况时,x为正整数;
②当z=2时,∴,
∴y可以分别取2,4,6,8,10,12共6种情况,x为正整数;
综上所述:共有8+6=14种购买方案.故选:D
【点睛】本题考查了求方程组的正整数解,根据题意列出方程,并确定方程组的解为正整数是解题关键.
3.(2019·湖北省直辖县级单位·中考真题)把一根长9m的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有( )
A.3种 B.4种 C.5种 D.9种
【答案】B
【分析】可列二元一次方程解决这个问题.
【解析】解:设的钢管根,根据题意得:,
、均为整数,,,,.故选:B.
【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.
4.(2020·四川宜宾·中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( )
A.2种 B.3种 C.4种 D.5种
【答案】B
【分析】设购买A 型分类垃圾桶x个,则购买B型垃圾桶(6-x),然后根据题意列出不等式组,确定不等式组整数解的个数即可.
【解析】解:设购买A 型分类垃圾桶x个,则购买B型垃圾桶(6-x)个
由题意得:,解得4≤x≤6
则x可取4、5、6,即有三种不同的购买方式.故答案为B.
【点睛】本题考查了一元一次方程组的应用,弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.
5.(2020·山东菏泽·中考真题)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买根跳绳和个毽子共需元;购买根跳绳和个毽子共需元.(1)求购买一根跳绳和一个毽子分别需要多少元;
(2)某班需要购买跳绳和毽子的总数量是,且购买的总费用不能超过元;若要求购买跳绳的数量多于根,通过计算说明共有哪几种购买跳绳的方案.
【答案】(1)购买一根跳绳需要6元,一个毽子需要4元;(2)方案一:购买跳绳21根;方案二:购买跳绳22根
【分析】(1)设购买一根跳绳需要x元,一个毽子需要y元,依题意列出二元一次方程组解之即可;
(2)设学校购进跳绳m根,则购进毽子(54-m)根,根据题意列出不等式解之得m的范围,进而可判断购买方案.
【解析】(1)设购买一根跳绳需要x元,一个毽子需要y元,
依题意,得:,解得:,
答:购买一根跳绳需要6元,一个毽子需要4元;
(2)设学校购进跳绳m根,则购进毽子(54-m)根,
根据题意,得:,解得:m≤22,又m﹥20,且m为整数,∴m=21或22,
∴共有两种购买跳绳的方案,方案一:购买跳绳21根;方案二:购买跳绳22根.
【点睛】本题考查二元一次方程组以及一元一次不等式的应用,根据题意正确列出方程式及不等式是解答的关键.
6.(2020·江苏连云港·中考真题)甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,公司共捐款140000元.下面是甲、乙两公司员工的一段对话:
(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买、两种防疫物资,种防疫物资每箱15000元,种防疫物资每箱12000元.若购买种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:、两种防疫物资均需购买,并按整箱配送).
【答案】(1)甲公司有150人,乙公司有180人;(2)有2种购买方案:购买8箱种防疫物资、10箱种防疫物资,或购买4箱种防疫物资、15箱种防疫物资
【分析】(1)设乙公司有x人,则甲公司有人,根据对话,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)(2)设购买种防疫物资箱,购买种防疫物资箱,根据甲公司共捐款100000元,公司共捐款140000元.列出方程,求解出,根据整数解,约束出m、n的值,即可得出方案.
【解析】(1)设乙公司有人,则甲公司有人,由题意得,解得.
经检验,是原方程的解.∴.答:甲公司有150人,乙公司有180人.
(2)设购买种防疫物资箱,购买种防疫物资箱,由题意得
,整理得.
又因为,且、为正整数,所以,.
答:有2种购买方案:购买8箱种防疫物资、10箱种防疫物资,或购买4箱种防疫物资、15箱种防疫物资.
【点睛】本题考查了分式方程的应用,方案问题,二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.
题型5.数学文化问题
1.(2020·福建中考真题)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为株,则符合题意的方程是( )
A. B. C. D.
【答案】A
【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.
【解析】解:由题意得:,故选A.
【点睛】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.
2.(2020·浙江嘉兴·中考真题)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程_____.
【答案】
【分析】根据“第二次每人所得与第一次相同,”列分式方程即可得到结论.
【解析】解:根据题意得,,故答案为:
【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出分式方程,是解题的关键.
3.(2020·江苏无锡·中考真题)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子最井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是___________尺.
【答案】8
【分析】先设绳长x尺,由题意列出方程,然后根据绳长即可求出井深.
【解析】解:设绳长x尺,由题意得x-4=x-1,解得x=36,井深:×36-4=8(尺),故答案为:8.
【点睛】本题考查了一元一次方程的实际应用,理解题意,找出等量关系是解题关键.
4.(2020·湖北恩施·中考真题)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒斛,1个小桶盛酒斛,下列方程组正确的是( ).
A. B. C. D.
【答案】A
【分析】根据大小桶所盛酒的数量列方程组即可.
【解析】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,
∵1个大桶加上5个小桶可以盛酒2斛,∴x+5y=2,
∴得到方程组,故选:A.
【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.
5.(2020·四川绵阳·中考真题)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )
A.160钱 B.155钱 C.150钱 D.145钱
【答案】C
【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【解析】解:设共有x人合伙买羊,羊价为y钱,
依题意,得:,解得:.故选:C.
【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
6.(2020·山东临沂·中考真题)《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为( )
A. B. C. D.
【答案】B
【分析】根据若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,列二元一次方程组.
【解析】解:设有x人,y辆车,依题意得: ,故选B.
【点睛】本题考查了二元一次方程组的实际应用,解决问题的关键是找出题中等量关系.
7.(2020·浙江宁波·中考真题)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )
A. B. C. D.
【答案】A
【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:绳子=木条-1,据此列出方程组即可.
【解析】解:设木条长x尺,绳子长y尺,那么可列方程组为:,故选:A.
【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.
题型6.最值(范围)问题
1.(2020·四川攀枝花·中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.
【答案】33
【分析】先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.
【解析】解:设x人进公园,若购满40张票则需要:40×(5-1)=40×4=160(元),
故5x>160时,解得:x>32,∴当有32人时,购买32张票和40张票的价格相同,
则再多1人时买40张票较合算;∴32+1=33(人);
则至少要有33人去世纪公园,买40张票反而合算.故答案为:33.
【点睛】此题主要考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.
2.(2020·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:
(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;
(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;
(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.
若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.
【答案】6
【分析】根据题中给出阅读过《三国演义》的人数,则先代入条件(3)可得出阅读过《西游记》的人数的取值范围,然后再根据条件(1)和(2)再列出两个不等式,得出阅读过《水浒传》的人数的取值范围,即可得出答案.
【解析】解:设阅读过《西游记》的人数是,阅读过《水浒传》的人数是,(均为整数)
依题意可得:且均为整数 可得:,最大可以取6;故答案为6.
【点睛】本题考查不等式的实际应用,注意题中的两个量都必须取整数是本题做题关键,求的最大值,则可通过题中不等关系得出是小于哪个数的,然后取小于这个数的最大整数即可.
3.(2019·湖南常德·中考真题)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为( )
A. B. C. D.
【答案】B
【分析】根据三人说法都错了得出不等式组解答即可.
【解析】根据题意可得:,可得:, ∴故选B.
【点睛】此题考查一元一次不等式组的应用,关键是根据题意得出不等式组解答.
4.(2020·广西中考真题)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
【答案】(1)每副围棋18元,则每副象棋10元;(2)该校最多可再购买25副围棋.
【分析】(1)设每副围棋x元,则每副象棋(x﹣8)元,根据420元购买象棋数量=756元购买围棋数量列出方程并解答;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意列出不等式并解答.
【解析】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,
根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.
答:每副围棋18元,则每副象棋10元;
(2)设购买围棋m副,则购买象棋(40﹣m)副,
根据题意,得18m+10(40﹣m)≤600.解得m≤25,故m最大值是25.
答:该校最多可再购买25副围棋.
【点睛】本题考查的是分式方程的应用,一元一次不等式的应用,掌握以上知识是解题的关键.
5.(2020·湖南娄底·中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶.
求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?
【答案】(1)该校购进洗手液120瓶,购进84消毒液280瓶;(2)最多能买洗手液25瓶.
【分析】(1)设购进洗手液x瓶,则购进84消毒液为瓶,根据题意得到一元一次方程,故可求解;(2)设最多能购买洗手液a瓶,根据题意得到不等式,故可求解.
【解析】解:(1)设购进洗手液x瓶,则购进84消毒液为瓶
依题意得: 解得
答:该校购进洗手液120瓶,购进84消毒液280瓶.
(2)设最多能购买洗手液a瓶 解得
答:最多能买洗手液25瓶.
【点睛】此题主要考查一元一次方程与不等式的应用,解题的关键是根据题意找到等量关系或不等关系列式求解.
6.(2020·江苏常州·中考真题)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?
【答案】(1)每千克苹果售价8元,每千克梨6千克;(2)最多购买5千克苹果
【分析】(1)设每千克苹果售价x元,每千克梨y千克,由题意列出x、y的方程组,解之即可;
(2)设购买苹果a千克,则购买梨(15-a)千克,由题意列出a的不等式,解之即可解答.
【解析】(1)设每千克苹果售价x元,每千克梨y千克,由题意,
得:,解得:,
答:每千克苹果售价8元,每千克梨6千克,
(2)设购买苹果a千克,则购买梨(15-a)千克,由题意,
得:8a+6(15-a)≤100,解得:a≤5,∴a最大值为5,
答:最多购买5千克苹果.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答的关键是认真审题,分析相关信息,正确列出方程组和不等式.
题型7.其他问题
1.(2020·浙江金华·中考真题)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x,则列出方程正确的是( )
A. B.
C. D.
【答案】D
【分析】直接利用表示十位数的方法进而得出等式即可.
【解析】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.
【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.
2.(2020·湖北省直辖县级单位·中考真题)篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.
【答案】9
【分析】设该对胜x场,则负14-x场,然后根据题意列一元一次方程解答即可.
【解析】解:设该对胜x场 由题意得:2x+(14-x)=23,解得x=9.故答案为9.
【点睛】本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.
3.(2020·湖南中考真题)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次.
【答案】4
【分析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x和y的二元一次方程组,求解即可.
【解析】解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:
,整理得:,解得:.故答案为:4.
【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列出方程组求解.
4.(2020·重庆中考真题)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.
【答案】
【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.
【解析】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为m,设7月份外卖还需增加的营业额为x.
∵7月份摆摊的营业额是总营业额的,且7月份的堂食、外卖营业额之比为8:5,
∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,
∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,
由题意可知: ,解得: ,∴,故答案为:.
【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.
5.(2020·四川攀枝花·中考真题)课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?
【答案】48人
【分析】设这些学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的少2组,根据此列方程求解.
【解析】解:设这些学生共有x人,根据题意,得 解得x=48.
答:这些学生共有48人.
【点睛】此题考查的知识点是一元一次方程的应用,其关键是找出等量关系及表示原来和后来各多少组,难度一般.
6.(2020·湖南益阳·中考真题)“你怎么样,中国便是怎么样:你若光明,中国便不黑暗”。年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城。针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有人不能到厂生产,为了应对疫情,已复产的工人加班生产,由原来每天工作小时增加到小时,每小时完成的工作量不变原来每天能生产防护服套,现在每天能生产防护服套.
(1)求原来生产防护服的工人有多少人?
(2)复工天后,未到的工人同时到岗加入生产,每天生产时间仍然为小时公司决定将复工后生产的防护服套捐献给某地,则至少还需要生产多少天才能完成任务?
【答案】(1)20;(2)8
【分析】(1)设原来生产防护服的工人有人,每小时完成的工作量为套,根据题意列出方程组,求解即可.(2)求出10天后,还剩余多少防护服没生产,根据(1)求出复工后每天的生产数量,相除即可得出结果.
【解析】(1)设原来生产防护服的工人有人,每小时完成的工作量为套,
根据原来每天工作小时,每天能生产防护服套,得.
根据现在每天工作小时,每天能生产防护服套,得.
联立方程,得∴得
解得=20,=5.经检验x=20,y=5是原方程的解 即原来生产防护服的工人有20人.
(2)复工10天,生产 套,剩余套.
由(1)可知:原来生产防护服的工人有20人,每小时完成的工作量为5套.
由题意知:10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.
则每天生产套.需要天.
【点睛】本题主要考查函数的性质及整式的乘除,熟练掌握函数的性质及整式的乘除是解题的关键.
7.(2020·湖北黄冈·中考真题)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?
【答案】每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元
【分析】根据题意列出二元一次方程组解出即可.
【解析】解:设每盒羊角春牌绿茶x元,每盒九孔牌藕粉y元,依题意可列方程组:
解得:
答:每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元.
【点睛】本题考查二元一次方程组的应用,关键在于理解题意找出等量关系.
8.(2020·江西中考真题)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.
(1)求笔记本的单价和单独购买一支笔芯的价格;
(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.
【答案】(1)5元,3元;(2)当两人共同购买笔芯,享受整盒购买的优惠时,能让两人既买到各自的文具又都买到小工艺品.
【分析】(1)根据小贤买3支笔芯,2本笔记本花费19元,可知等量关系:笔芯的单价×3+笔记本单价×2=小贤花费金额,同样可得小艺的等量关系,这两个等量关系可列方程组解答;
(2)小贤买3支笔芯,小艺4支笔芯,凑起来即为一盒,由题目已知整盒买比单支买每支可优惠0.5元,可知优惠5元,再加上小贤剩余两元即可让两人既买到各自的文具,又都买到小工艺品.
【解析】(1)设单独购买一支笔芯的价格为x元,一本笔记本的价格为y元,
有,解得;故笔记本的单价为5元,单独购买一支笔芯的价格为3元.
(2)两人共有金额19+26+2=47元,
若两人共购买10支笔芯(一盒),3本笔记本,由题目已知整盒买比单支买每支可优惠0.5元,
故两人买到各自的文具需要花费10×2.5+3×5=40(元),剩余47-40=7(元),可购买两件单价为3元的小工艺品;故只有当两人一同购买笔芯,享受整盒购买优惠,即可能让他们既买到各自的文具,又都买到小工艺品.
【点睛】(1)本题主要考查了二元一次方程组的求解,其中根据题目信息找到等量关系,;列出方程组是解题的关键;(2)本题主要是对题目中关键信息的理解以及应用,其中观察到整盒购买享受优惠是成功让两人既买到各自的文具,又都买到小工艺品的关键.
题型8.综合类应用题
(1).一元一次方程(组)与不等式结合
1.(2020·湖南长沙·中考真题)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:
第一批
第二批
A型货车的辆数(单位:辆)
1
2
B型货车的辆数(单位:辆)
3
5
累计运送货物的顿数(单位:吨)
28
50
备注:第一批、第二批每辆货车均满载
(1)求A,B两种型号货车每辆满载分别能运多少吨生活物资;(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A型号货车,试问至少还需联系多少辆B型号货车才能一次性将这批生活物资运往目的地.
【答案】(1)A,B两种型号货车每辆满载分别能运10吨,6吨生活物资;(2)6.
【分析】(1)设A,B两种型号货车每辆满载分别能运x,y吨生活物资,根据条件建立方程组求出其解即可;(2)设还需联系m辆B型号货车才能一次性将这批生活物资运往目的地,根据题中的不等关系列出不等式解答即可.
【解析】解:(1)设A,B两种型号货车每辆满载分别能运x,y吨生活物资
依题意,得解得
∴A,B两种型号货车每辆满载分别能运10吨,6吨生活物资
(2)设还需联系m辆B型号货车才能一次性将这批生活物资运往目的地
依题意,得.解得m5.4又m为整数,∴m最小取6
∴至少还需联系6辆B型号货车才能一次性将这批生活物资运往目的地.
【点睛】本题考查了列二元一次方程组解实际问题的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
2.(2020·山东菏泽·中考真题)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买根跳绳和个毽子共需元;购买根跳绳和个毽子共需元.(1)求购买一根跳绳和一个毽子分别需要多少元;
(2)某班需要购买跳绳和毽子的总数量是,且购买的总费用不能超过元;若要求购买跳绳的数量多于根,通过计算说明共有哪几种购买跳绳的方案.
【答案】(1)购买一根跳绳需要6元,一个毽子需要4元;(2)方案一:购买跳绳21根;方案二:购买跳绳22根
【分析】(1)设购买一根跳绳需要x元,一个毽子需要y元,依题意列出二元一次方程组解之即可;
(2)设学校购进跳绳m根,则购进毽子(54-m)根,根据题意列出不等式解之得m的范围,进而可判断购买方案.
【解析】(1)设购买一根跳绳需要x元,一个毽子需要y元,
依题意,得:,解得:,
答:购买一根跳绳需要6元,一个毽子需要4元;
(2)设学校购进跳绳m根,则购进毽子(54-m)根,
根据题意,得:,解得:m≤22,
又m﹥20,且m为整数,∴m=21或22,
∴共有两种购买跳绳的方案,方案一:购买跳绳21根;方案二:购买跳绳22根.
【点睛】本题考查二元一次方程组以及一元一次不等式的应用,根据题意正确列出方程式及不等式是解答的关键.
3.(2020·江苏常州·中考真题)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?
【答案】(1)每千克苹果售价8元,每千克梨6千克;(2)最多购买5千克苹果
【分析】(1)设每千克苹果售价x元,每千克梨y千克,由题意列出x、y的方程组,解之即可;
(2)设购买苹果a千克,则购买梨(15-a)千克,由题意列出a的不等式,解之即可解答.
【解析】(1)设每千克苹果售价x元,每千克梨y千克,由题意,得:,解得:,
答:每千克苹果售价8元,每千克梨6千克,
(2)设购买苹果a千克,则购买梨(15-a)千克,由题意,
得:8a+6(15-a)≤100,解得:a≤5,∴a最大值为5,
答:最多购买5千克苹果.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答的关键是认真审题,分析相关信息,正确列出方程组和不等式.
4.(2020·辽宁抚顺·中考真题)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.
(1)求每本甲种词典和每本乙种词典的价格分别为多少元?
(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?
【答案】(1)每本甲种词典的价格为70元,每本乙种词典的价格50元;(2)最多可购买甲种词典5本
【分析】(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设学校购买甲种词典m本,则购买乙种词典(30-m)本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【解析】(1)设每本甲种词典的价格为元,每本乙种词典的价格为元,根据题意,得
解得
答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.
(2)设学校计划购买甲种词典本,则购买乙种词典本,根据题意,得
解得答:学校最多可购买甲种词典5本.
【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
5.(2020·宁夏中考真题)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;
(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?
【答案】(1)购买A、B两种防疫物品每件分别为16元和4元;(2)最多购买A种防疫物品383件.
【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设A种奖品购买a件,则B种奖品购买(600-a)件,根据总价=单价×购买数量结合总费用不超过7000元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.
【解析】(1)设购买A、B两种防疫物品每件分别为x元和y元,根据题意,得:
解得:答:购买A、B两种防疫物品每件分别为16元和4元.
(2)设购买A种防疫物品a件,根据题意,得:
解得,,因为a取最大正整数,所以
答:最多购买A种防疫物品383件.
【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,找出关于a的一元一次不等式.
6.(2019·浙江温州·中考真题)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
【答案】(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.
【分析】(1)设该旅行团中成人人,少年人,根据儿童10人,成人比少年多12人列出方程组求解即可;
(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可;
②分情况讨论,分别求出在a的不同取值范围内b的最大值,得到符合题意的方案,并计算出所需费用,比较即可.
【解析】解:(1)设该旅行团中成人人,少年人,根据题意,得,解得.
答:该旅行团中成人17人,少年5人.
(2)∵①成人8人可免费带8名儿童,
∴所需门票的总费用为:(元).
②设可以安排成人人、少年人带队,则.
当时,
(ⅰ)当时,,∴,∴,此时,费用为1160元.
(ⅱ)当时,,∴,∴,此时,费用为1180元.
(ⅲ)当时,,即成人门票至少需要1200元,不合题意,舍去.
当时,
(ⅰ)当时,,∴,∴,此时,费用为1200元.
(ⅱ)当时,,∴,
∴,此时,不合题意,舍去.
(ⅲ)同理,当时,,不合题意,舍去.
综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.
【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.
7.(2020·黑龙江·中考真题)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需要136元;若购买2个大地球仪和1个小地球仪需要132元.
(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪.
【答案】(1)每个大地球仪52元,每个小地球仪28元;(2)昌云中学最多可以购买5个大地球仪.
【分析】(1)设每个大地球仪x元,每个小地球仪y元,根据题意列出方程组求解即可;
(2)设昌云中学可以购买m个大地球仪,则购买小地球仪(30-m)个,根据题意列出不等式求解即可.
【解析】解:(1)设每个大地球仪x元,每个小地球仪y元,
由题意可得,解得:,
答:每个大地球仪52元,每个小地球仪28元;
(2)设昌云中学可以购买m个大地球仪,则购买小地球仪(30-m)个,
根据题意得52m+28(30-m)≤960解得m≤5∴昌云中学最多可以购买5个大地球仪.
【点睛】本题考查了二元一次方程组的实际应用和一元一次不等式的实际应用,根据题意列出式子是解题关键.
(2).分式方程与不等式结合
1.(2020·贵州黔南·中考真题)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.
(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?
(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?
【答案】(1)甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)购买了20瓶乙品牌消毒剂
【分析】(1)设甲品牌每瓶x元,则乙品牌每瓶3x-50元,根据题意列出方程,解出x即可;
(2)设购买了乙品牌a瓶,则购买了甲品牌40-a瓶,,根据题意列出方程,解出a即可.
【解析】(1)解:设甲品牌每瓶x元,则乙品牌每瓶3x-50元,
根据题意得:,解得:x=30,则3x-50=3×30-50=40,
则甲品牌消毒剂每瓶的价格为30元,乙品牌消毒剂每瓶的价格为40元;
(2)设购买了乙品牌a瓶,则购买了甲品牌40-a瓶,
根据题意得:,解得:a=20,则购买了20瓶乙品牌消毒剂.
【点睛】本题是对分式方程运用的考查,准确根据题意列出方程是解决本题的关键.
2.(2020·广西中考真题)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
【答案】(1)每副围棋18元,则每副象棋10元;(2)该校最多可再购买25副围棋.
【分析】(1)设每副围棋x元,则每副象棋(x﹣8)元,根据420元购买象棋数量=756元购买围棋数量列出方程并解答;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意列出不等式并解答.
【解析】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,
根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.
答:每副围棋18元,则每副象棋10元;
(2)设购买围棋m副,则购买象棋(40﹣m)副,
根据题意,得18m+10(40﹣m)≤600.解得m≤25,故m最大值是25.
答:该校最多可再购买25副围棋.
【点睛】本题考查的是分式方程的应用,一元一次不等式的应用,掌握以上知识是解题的关键.
3.(2020·辽宁铁岭·中考真题)某中学为了创设“书香校园”,准备购买两种书架,用于放置图书.在购买时发现,种书架的单价比种书架的单价多20元,用600元购买种书架的个数与用480元购买种书架的个数相同.(1)求两种书架的单价各是多少元?(2)学校准备购买两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个种书架?
【答案】(1)购买种书架需要100元,种书架需要80元;(2)最多可购买10个种书架.
【分析】(1)根据题意以书架个数为等量关系列出分式方程求解即可;
(2)根据题意用代数式表示总费用,小于等于1400,列出不等式求解即可.
【解析】解:(1)设种书架的单价为元,根据题意,得 解得
经检验:是原分式方程的解
答:购买种书架需要100元,种书架需要80元.
(2)设准备购买个种书架,根据题意,得 解得
答:最多可购买10个种书架.
【点睛】本题主要考查分式方程的应用、一元一次不等式的应用,解题关键在于根据题意列出方程和不等式.
4.(2020·内蒙古赤峰·中考真题)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?
(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?
【答案】(1)甲工程队每天修路100米,乙工程队每天修路50米;(2)至少安排乙队施工32天.
【分析】(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,根据甲工程队修500米公路需要的天数=乙工程队修500米公路需要的天数-5即可列出分式方程,解方程并检验后即得答案;
(2)设安排乙队施工y天,根据甲工程队施工费用+乙工程队施工费用≤40万元即可列出不等式,解不等式即可求出y的范围,进而可得结果.
【解析】解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,
根据题意,得,解得:x=50,经检验:x=50是所列方程的根,2x=100.
答:甲工程队每天修路100米,乙工程队每天修路50米.
(2)设安排乙队施工y天,根据题意,得,
解得:,所以y最小为32.答:至少安排乙队施工32天.
【点睛】本题考查了分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等和不等关系是解题的关键.
5.(2020·湖南永州·中考真题)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?
【答案】(1)一次性医用口罩和N95口单价分别是2元,12元;(2)药店购进一次性医用口罩至少1400只
【分析】(1)设一次性医用口罩单价为x元,则N95口罩的单价为元,列分式方程求解即可;
(2)设购进一次性医用口罩y只,根据题意列不等式求解即可.
【解析】解:(1)设一次性医用口罩单价为x元,则N95口罩的单价为元
由题意可知,,解方程 得. 经检验是原方程的解,
当时,.
答:一次性医用口罩和N95口单价分别是2元,12元.
(2)设购进一次性医用口罩y只
根据题意得, 解不等式得.
答:药店购进一次性医用口罩至少1400只.
【点睛】本题考查的是分式方程的应用,一元一次不等式的应用,掌握列分式方程与列不等式是解题的关键.
6.(2019·湖南衡阳·中考真题)某商店购进、两种商品,购买1个商品比购买1个商品多花10元,并且花费300元购买商品和花费100元购买商品的数量相等.(1)求购买一个商品和一个商品各需要多少元;(2)商店准备购买、两种商品共80个,若商品的数量不少于商品数量的4倍,并且购买、商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
【答案】(1)购买一个商品需要15元,购买一个商品需要5元;(2)商店有2种购买方案,方案①:购进商品65个、商品15个;方案②:购进商品64个、商品16个.
【分析】(1)设购买一个商品需要元,则购买一个商品需要元,根据数量=总价÷单价结合花费300元购买商品和花费100元购买商品的数量相等,即可得出关于的分式方程,解之经检验后即可得出结论;(2)设购买商品个,则购买商品个,根据商品的数量不少于商品数量的4倍并且购买、商品的总费用不低于1000元且不高于1050元,即可得出关于的一元一次不等式组,解之即可得出的取值范围,再结合为整数即可找出各购买方案.
【解析】解:(1)设购买一个商品需要元,则购买一个商品需要元,
依题意,得:,解得:,
经检验,是原方程的解,且符合题意,∴.
答:购买一个商品需要15元,购买一个商品需要5元.
(2) 设购买商品个,则购买商品个,
依题意,得:,解得:.
∵为整数,∴或16.∴商店有2种购买方案,方案①:购进商品65个、商品15个;方案②:购进商品64个、商品16个.
【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
(3)、方程(组)、不等式及一次函数结合
1.(2020·山东济南·中考真题)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格
进价(元/部)
售价(元/部)
A
3000
3400
B
3500
4000
某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.
(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?
【答案】(1)营业厅购进A、B两种型号手机分别为6部、4部;(2)营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元
【分析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求得营业厅购进A、B两种型号手机各多少部;(2)根据题意,可以得到利润与A种型号手机数量的函数关系式,然后根据B型手机的数量不多于A型手机数量的2倍,可以求得A种型号手机数量的取值范围,再根据一次函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少.
【解析】解:(1)设营业厅购进A、B两种型号手机分别为a部、b部,
,解得,,
答:营业厅购进A、B两种型号手机分别为6部、4部;
(2)设购进A种型号的手机x部,则购进B种型号的手机(30﹣x)部,获得的利润为w元,
w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,
∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,
∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,
∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,
答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.
【点睛】本题考查了二元一次方程组的应用,以及一次函数的应用,熟练掌握一次函数的性质是解答本题的关键.
2.(2020·湖北武汉·初一期末)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
甲型客车
乙型客车
载客量(人/辆)
35
30
租金(元/辆)
400
320
学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;
(3)学校共有几种租车方案?最少租车费用是多少?
【答案】(1)参加此次研学活动的老师有16人,学生有234人.(2)8;(3)学校共有4种租车方案,最少租车费用是2720元.
【分析】(1)设参加此次研学活动的老师有人,学生有人,根据题意列出方程组即可求解;
(2)利用租车总辆数=总人数÷35,再结合每辆车上至少要有2名老师,即可求解;
(3)设租35座客车辆,则需租30座的客车辆,根据题意列出不等式组即可求解.
【解析】解:(1)设参加此次研学活动的老师有人,学生有人,
依题意,得:,解得:.
答:参加此次研学活动的老师有16人,学生有234人.
(2)(辆)(人),(辆),
租车总辆数为8辆.故答案为8.
(3)设租35座客车辆,则需租30座的客车辆,
依题意,得:,解得:.
为正整数,,共有4种租车方案.
设租车总费用为元,则,
,的值随值的增大而增大,
当时,取得最小值,最小值为2720.
学校共有4种租车方案,最少租车费用是2720元.
【点睛】本题考查的是二元一次方程组和不等式组的实际应用,熟练掌握两者是解题的关键.
3.(2020·福建中考真题)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.
(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.
【答案】(1)甲特产15吨,乙特产85吨;(2)26万元.
【分析】(1)设这个月该公司销售甲特产吨,则销售乙特产吨,根据题意列方程解答;
(2)设一个月销售甲特产吨,则销售乙特产吨,且,根据题意列函数关系式,再根据函数的性质解答.
【解析】解:(1)设这个月该公司销售甲特产吨,则销售乙特产吨,
依题意,得,解得,则,
经检验符合题意,所以,这个月该公司销售甲特产15吨,乙特产85吨;
(2)设一个月销售甲特产吨,则销售乙特产吨,且,
公司获得的总利润,
因为,所以随着的增大而增大,
又因为,所以当时,公司获得的总利润的最大值为26万元,
故该公司一个月销售这两种特产能获得的最大总利润为26万元.
【点睛】此题考查一元一次方程的实际应用、一次函数的性质等基础知识,考查运算能力、应用意识,考查函数与方程思想,正确理解题意,根据问题列方程或是函数关系式解答问题.
4.(2020·广东深圳·)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?
【答案】(1)肉粽得进货单价为10元,蜜枣粽得进货单价为4元;(2)第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元.
【分析】(1)设肉粽和蜜枣粽的进货单价分别为x、y元,根据题意列方程组解答;
(2)设第二批购进肉粽t个,第二批粽子得利润为W,列出函数关系式再根据函数的性质解答即可.
【解析】(1)设肉粽和蜜枣粽的进货单价分别为x、y元,则根据题意可得:
.解此方程组得:.
答:肉粽得进货单价为10元,蜜枣粽得进货单价为4元;
(2)设第二批购进肉粽t个,第二批粽子得利润为W,则 ,
∵k=2>0,∴W随t的增大而增大,由题意,解得,
∴当t=200时,第二批粽子由最大利润,最大利润,
答:第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元.
【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,一次函数解决实际问题,一次函数的性质,正确理解题意列出方程组或函数、不等式解决问题是关键.
5.(2020·山东济宁·中考真题)为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?
【答案】(1)1辆大货车和1辆小货车一次可以分别运输150箱,100箱物资;(2)共有3种方案,6辆大货车和6辆小货车,7辆大货车和5辆小货车;8辆大货车和4辆小货车,当安排6辆大货车和6辆小货车时,总费用最少,为48000元.
【分析】(1)设1辆大货车和1辆小货车一次可以分别运输x箱,y箱物资,根据题意列出二元一次方程组,求解即可;(2)设安排m辆大货车,则小货车(12-m)辆,总费用为W,根据运输物资不少于1500箱,且总费用小于54000元分别得出不等式,求解即可得出结果.
【解析】解:(1)设1辆大货车和1辆小货车一次可以分别运输x箱,y箱物资,
根据题意,得:,解得:,
答:1辆大货车和1辆小货车一次可以分别运输150箱,100箱物资;
(2)设安排m辆大货车,则小货车(12-m)辆,总费用为W,
则150m+(12-m)×100≥1500,解得:m≥6,
而W=5000m+3000×(12-m)=2000m+36000<54000,
解得:m<9,则6≤m<9,
则运输方案有3种:6辆大货车和6辆小货车;7辆大货车和5辆小货车;8辆大货车和4辆小货车;
∵2000>0,∴当m=6时,总费用最少,且为2000×6+36000=48000元.
∴共有3种方案,当安排6辆大货车和6辆小货车时,总费用最少,为48000元.
【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的实际应用,解题的关键是理解题意,找到等量关系和不等关系,列出式子.
6.(2020·四川中考真题)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.
①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.
【答案】(1)甲每天需工程费2000元、乙工程队每天需工程费1500元;(2)①甲乙两工程队分别工作的天数共有7种可能;②当甲平整52天,乙平整2天时,费用最低,最低费用为107000元
【分析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②把问题转化为不等式解决即可.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,利用函数的性质解答即可.
【解析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,
由题意,=,解得x=2000,经检验,x=2000是分式方程的解.
答:甲每天需工程费2000元、乙工程队每天需工程费1500元.
故答案为甲每天需工程费2000元、乙工程队每天需工程费1500元;
(2)①设甲平整x天,则乙平整y天.
由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②,由①得到y=80﹣1.5x③,
把③代入②得到,2000x+1500(80﹣1.5x)≤110000,解得,x≥40,
∵y>0,∴80﹣1.5x>0,x<53.3,∴40≤x<53.3,
∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x=50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.故答案为共有7中可能;
②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,
∵﹣250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).
答:最低费用为107000元.故答案为:最低费用为107000元.
【点睛】本题考查了分式方程的实际应用,一次函数的实际应用,是利润问题中的综合题,考查较为全面,对于一次函数而言,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
7.(2020·广东中考真题)某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米,建类摊位每平方米的费用为40元,建类摊位每平方米的费用为30元,用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的.(1)求每个,类摊位占地面积各为多少平方米?(2)该社拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求建造这90个摊位的最大费用.
【答案】(1)5平方米;3平方米 (2)10520元
【分析】(1)设类摊位占地面积平方米,则类占地面积平方米,根据同等面积建立A类和B类的倍数关系列式即可;(2)设建类摊位个,则类个,设费用为,由(1)得A类和B类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.
【解析】解:(1)设每个类摊位占地面积平方米,则类占地面积平方米
由题意得 解得, ∴,经检验为分式方程的解
∴每个类摊位占地面积5平方米,类占地面积3平方米
(2)设建类摊位个,则类个,费用为 ∵ ∴
,∵110>0,∴z随着a的增大而增大,
又∵a为整数,∴当时z有最大值,此时
∴建造90个摊位的最大费用为10520元
【点睛】本题考查一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.
8.(2020·湖北孝感·中考真题)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知乙产品的售价比甲产品的售价多5元,丙产品的售价是甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?
(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买农产品最少要花费多少元?
【答案】(1)甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)按此方案购买农产品最少要花费300元.
【分析】(1)设甲产品的售价为元,先表示出乙产品的售价和丙产品的售价,再根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”建立方程,然后求解即可得;
(2)设的甲、乙、丙三种农产品搭配中,丙种农产品有,先求出乙种农产品的数量和甲种农产品的数量,再根据题干三种农产品间的数量关系列出不等式求出m的取值范围,然后根据(1)的结论得出所需费用关于m的函数关系式,最后利用一次函数的性质即可得.
【解析】(1)设甲产品的售价为元,则乙产品的售价为元,丙产品的售价为元
由题意得: 解得:
经检验,是所列分式方程的解,也符合题意 则,
答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;
(2)设的甲、乙、丙三种农产品搭配中,丙种农产品有,则乙种农产品有,甲种农产品有 由题意得: 解得
设按此销售方案购买农产品所需费用元 则
∵在范围内,随的增大而增大
∴当时,取得最小值,最小值为(元)
答:按此方案购买农产品最少要花费300元.
【点睛】本题考查了分式方程的实际应用、一次函数的实际应用、一元一次不等式的应用等知识点,依据题意,正确列出方程和函数的解析式是解题关键.
9.(2020·黑龙江牡丹江·中考真题)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?
(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?
【答案】(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有3个,样品中A种书包有2个,B种书包有2个.
【分析】(1)设A种书包每个进价是x元,根据题意列出方程,求解即可;
(2)设购进A种书包m个,根据题意得出不等式70m+90(2m+5)≤5450,求出m,再结合A种书包不少于18个,得出m的取值范围,从而可得方案;
(3)根据获利最大得到购进A种书包20个,则B种书包45个,设赠送的书包中,A种书包s个,样品中有t个A种书包,则B种书包5-s个,样品中有4-t个B种书包,根据获利1370元得到方程,再求出符合题意的整数解即可.
【解析】解:(1)设A种书包每个进价是x元,则B种书包每个进价是x+20元,
由题意可得:,解得:x=70,经检验:x=70是原方程的解,70+20=90元,
∴A,B两种书包每个进价各是70元和90元;
(2)设购进A种书包m个,则B种书包2m+5个,m≥18,
根据题意得:70m+90(2m+5)≤5450,解得:m≤20,则18≤m≤20,∴共有3种方案:
购进A种书包18个,则B种书包41个;
购进A种书包19个,则B种书包43个;
购进A种书包20个,则B种书包45个;
(3)设获利W元,则W=(90-70)m+(130-90)(2m+5)=100m+200,
∵100>0,∴W随m的增大而增大,则当m=20时,W最大,
则购进A种书包20个,则B种书包45个,
设赠送的书包中,A种书包s个,样品中有t个A种书包,
则B种书包5-s个,样品中有4-t个B种书包,
则此时W=(20-s-t)×(90-70)+t(90×0.5-70)+(45-5+s-4+t)×(130-90)+(4-t)(130×0.5-90)-70s-(5-s)×90=1370,整理得:2s+t=4,即,
根据题意可得两种书包都需要有样品,则t≠0且t≠4,∴t=2,s=1,
∴赠送的书包中,A种书包有1个,B种书包有3个,样品中A种书包有2个,B种书包有2个.
【点睛】本题考查了分式方程,一元一次不等式,二元一次方程的实际应用,难度较大,解题时务必理解题意,得到相应的等量关系和不等关系.
10.(2020·湖北恩施·中考真题)某校足球队需购买、两种品牌的足球.已知品牌足球的单价比品牌足球的单价高20元,且用900元购买品牌足球的数量用720元购买品牌足球的数量相等.
(1)求、两种品牌足球的单价;
(2)若足球队计划购买、两种品牌的足球共90个,且品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买品牌足球个,总费用为元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
【答案】(1)购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;
(2)该队共有6种购买方案,购买60个A品牌30个B 品牌的总费用最低,最低费用是8400元.
【分析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x-20)元,根据用900元购买品牌足球的数量用720元购买品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,根据总价=单价×数量结合总价不超过8500元,以及品牌足球的数量不小于品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.
【解析】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x-20)元,根据题意,得解得:x=100经检验x=100是原方程的解x-20=80
答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元.
(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,则W=100m+80(90-m)=20m+7200
∵品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.
∴解不等式组得:60≤m≤65
所以,m的值为:60,61,62,63,64,65即该队共有6种购买方案,
当m=60时,W最小 m=60时,W=20×60+7200=8400(元)
答:该队共有6种购买方案,购买60个A品牌30个B 品牌的总费用最低,最低费用是8400元.
【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
相关资料
更多