所属成套资源:2022年中考数学高频考点专题突破
考点15 圆-2022年中考数学高频考点专题突破(全国通用)(原卷版)
展开这是一份考点15 圆-2022年中考数学高频考点专题突破(全国通用)(原卷版),共15页。试卷主要包含了与圆有关的概念和性质,推论,切线的性质,切线的判定等内容,欢迎下载使用。
考点15圆
知识框架:
基础知识点:
知识点1-1圆的有关概念
1.与圆有关的概念和性质
1)圆:平面上到定点的距离等于定长的所有点组成的图形.
2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.
3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.
4)圆心角:顶点在圆心的角叫做圆心角.
5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.
6)弦心距:圆心到弦的距离.
知识点1-2垂径定理及其推论
1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.
2.推论: 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
知识点1-3圆心角、弧、弦的关系
1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.
2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
知识点1-4圆周角定理及其推论
1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.
2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等. 2)直径所对的圆周角是直角.
圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.
知识点1-5与圆有关的位置关系
1.点与圆的位置关系
设点到圆心的距离为d.(1)d
判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.
2.直线和圆的位置关系
位置关系
相离
相切
相交
图形
公共点个数
0个
1个
2个
数量关系
d>r
d=r
d
3.切线的性质
1)切线与圆只有一个公共点.2)切线到圆心的距离等于圆的半径.3)切线垂直于经过切点的半径.
利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.
4.切线的判定
1)与圆只有一个公共点的直线是圆的切线(定义法).
2)到圆心的距离等于半径的直线是圆的切线.
3)经过半径外端点并且垂直于这条半径的直线是圆的切线.
切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.
知识点1-6 三角形与圆
1.三角形的外接圆相关概念
经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.
2.三角形的内切圆
与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.
3. 正多边形的有关概念
正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.
正多边形半径:正多边形外接圆的半径叫做正多边形半径.
正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.
正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.
知识点1-7 与圆有关的计算公式
1.弧长和扇形面积的计算:扇形的弧长l=;扇形的面积S==.
2.圆锥与侧面展开图
1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.
2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,
圆锥的侧面积为S圆锥侧=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).
在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.
重难点题型
考点1. 圆的基本概念
【解题技巧】1).在一个圆中可以画出无数条弦和直径.2).直径是弦,但弦不一定是直径.
3).在同一个圆中,直径是最长的弦.4).半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5).在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.
1.(2020·山东临沂市·)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点到以原点为圆心,以1为半径的圆的距离为_____.
2.(2020·甘肃兰州市·中考模拟)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有
A.4个 B.3个 C.2个 D.1个
3.(2020·山东临沂市)如图,在中,为直径,,点D为弦的中点,点E为上任意一点,则的大小可能是( )
A. B. C. D.
4.(2020·江苏常州市·中考真题)如图,是的弦,点C是优弧上的动点(C不与A、B重合),,垂足为H,点M是的中点.若的半径是3,则长的最大值是( )
A.3 B.4 C.5 D.6
5.(2020·山东潍坊市·中考真题)如图,在中,,以点O为圆心,2为半径的圆与交于点C,过点C作交于点D,点P是边上的动点.当最小时,的长为( )
A. B. C.1 D.
考点2. 垂径定理
【解题技巧】
1).垂径定理中的“弦”为直径时,结论仍然成立.
2).垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.
1.(2020·山东滨州市·中考真题)在中,直径AB=15,弦DE⊥AB于点C.若OC:OB=3 :5,则DE的长为( )
A.6 B.9 C.12 D.15
2.(2020·广东广州市·中考真题)往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )
A. B. C. D.
3.(2020·湖北中考真题)如图,点在上,,垂足为E.若,,则( )
A.2 B.4 C. D.
4.(2020·陕西中考真题)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )
A.55° B.65° C.60° D.75°
5.(2020·江苏南京市·中考真题)如图,在平面直角坐标系中,点在第一象限,⊙P与x轴、y轴都相切,且经过矩形的顶点C,与BC相交于点D,若⊙P的半径为5,点的坐标是,则点D的坐标是( )
A. B. C. D.
6.(2020·浙江嘉兴市·中考真题)如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:
①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;
②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;
③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为( )
A.2 B.10 C.4 D.5
7.(2020·贵州黔东南·中考真题)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB的长为( )
A.8 B.12 C.16 D.2
考点3. 弧、弦、圆心角、圆周角
【解题技巧】1).圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.
2).圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.
1.(2020·湖北荆门市·中考真题)如图,中,,则的度数为( )
A. B. C. D.
2.(2020·山东泰安市·中考真题)如图,是的内接三角形,,是直径,,则的长为( )
A.4 B. C. D.
3.(2020·山东青岛市·中考真题)如图,是的直径,点,在上,,交于点.若.则的度数为( )
A. B. C. D.
4.(2020·四川泸州市·中考真题)如图,中,,.则的度数为( )
A.100° B.90° C.80° D.70°
5.(2020·柳州市中考真题)如图,点A、B、C在⊙O上,若∠BOC=70°,则∠A的度数为( )
A.35° B.40° C.55° D.70°
6.(2020·浙江杭州市·中考真题)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则( )
A.3α+β=180° B.2α+β=180° C.3α﹣β=90° D.2α﹣β=90°
7.(2020·四川眉山市·中考真题)如图,四边形的外接圆为⊙,,,,则的度数为( )
A. B. C. D.
8.(2020·浙江中考真题)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是( )
A.70° B.110° C.130° D.140°
考点4. 点、直线与圆的位置关系
【解题技巧】1).点和圆的位置关系:①在圆上;②在圆内;③在圆外.2).直线和圆的位置关系:相交、相切、相离.
1.(2020·广东广州市·中考真题)如图,中,,,,以点为圆心,为半径作,当时,与的位置关系是( )
A.相离 B.相切 C.相交 D.无法确定
2.(2020·上海中考真题)在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是____.
3. (2020·四川中考模拟)已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是
A.点A在⊙O上 B.点A在⊙O内 C.点A在⊙O外 D.点A与圆心O重合
4. (2020·河北中考模拟)在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是
A.相离 B.相切 C.相交 D.无法确定
考点5. 切线的性质
【解题技巧】有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.
1.(2020·湖南湘西土家族苗族自治州·中考真题)如图,、为⊙O的切线,切点分别为A、B,交于点C,的延长线交⊙O于点D.下列结论不一定成立的是( )
A.为等腰三角形 B.与相互垂直平分
C.点A、B都在以为直径的圆上 D.为的边上的中线
2.(2020·江苏徐州市·中考真题)如图,是的弦,点在过点的切线上,,交于点.若,则的度数等于( )
A. B. C. D.
第2题 第3题 第4题
3.(2020·江苏苏州市·中考真题)如图,已知是的直径,是的切线,连接交于点,连接.若,则的度数是_________.
4.(2020·重庆中考真题)如图,AB是的切线,A切点,连接OA,OB,若,则的度数为( )
A.40° B.50° C.60° D.70°
5.(2020·山东泰安市·中考真题)如图,是的切线,点A为切点,交于点B,,点C在上,.则等于( )
A.20° B.25° C.30° D.50°
6.(2020·黑龙江哈尔滨市·中考真题)如图是直径,点A为切点,交于点C,点D在上,连接,若,则的度数为( )
A. B. C. D.
考点6. 切线的判定
【解题技巧】
1.(2020·湖南永州市·中考真题)如图,内接于是的直径,与相切于点B,交的延长线于点D,E为的中点,连接.(1)求证:是的切线.(2)已知,求O,E两点之间的距离.
2.(2020·青海中考真题)如图,已知AB是的直径,直线BC与相切于点B,过点A作AD//OC交于点D,连接CD.(1)求证:CD是的切线.(2)若,直径,求线段BC的长.
3.(2020·四川南充市·中考真题)如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC得延长线于点E,延长线ED交AB得延长线于点F.
(1)判断直线EF与⊙O的位置关系,并证明.(2)若DF=,求tan∠EAD的值.
4.(2020·山东潍坊市·中考真题)如图,为的直径,射线交于点F,点C为劣弧的中点,过点C作,垂足为E,连接.(1)求证:是的切线;(2)若,求阴影部分的面积.
5.(2020·湖南湘潭市·中考真题)如图,在中,,以为直径的交于点,过点作,垂足为点.(1)求证:;(2)判断直线与的位置关系,并说明理由.
6.(2020·湖南湘西土家族苗族自治州·中考真题)如图,是⊙O的直径,是⊙O的切线,交⊙O于点E.(1)若D为的中点,证明:是⊙O的切线;(2)若,,求⊙O的半径的长.
考点7. 内心和外心问题
【解题技巧】
1.(2020·浙江金华市·中考真题)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是( )
A.65° B.60° C.58° D.50°
2.(2020·山东济宁市·中考真题)如图,在△ABC中点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是( )
A.4 B.2 C.2 D.4
3.(2020·湖南永州市·中考真题)如图,已知是的两条切线,A,B为切点,线段交于点M.给出下列四种说法:①;②;③四边形有外接圆;④M是外接圆的圆心,其中正确说法的个数是( )
A.1 B.2 C.3 D.4
4.(2020·湖北荆州市·中考真题)已知:,求作的外接圆,作法:①分别作线段BC,AC的垂直平分线EF和MN,它们交于点O;②以点O为圆心,OB的长为半径画弧,如图⊙O即为所求,以上作图用到的数学依据是___________________.
5.(2020·青海中考真题)在中,,,,则的内切圆的半径为__________.
6.(2020·辽宁丹东市·中考真题)如图,在四边形中,,,,,分别以和为圆心,以大于的长为半径作弧,两弧相交于点和,直线与延长线交于点,连接,则的内切圆半径是( )
A.4 B. C.2 D.
7.(2020·内蒙古赤峰市·中考真题)如图,中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA =3,则外接圆的面积为( )
A. B. C. D.
考点8. 正多边形与圆
【解题技巧】任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
1.(2020·四川中考真题)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是( )
A.abc B.bac C.acb D.cba
2.(2020·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将边长为1的正六边形绕点O顺时针旋转i个45°,得到正六边形,则正六边形的顶点的坐标是( )
第2题 第3题 第4题
A. B. C. D.
3.(2020·湖北随州市·中考真题)设边长为的等边三角形的高、内切圆的半径、外接圆的半径分别为、、,则下列结论不正确的是( )
A. B. C. D.
4.(2020·山东德州市·中考真题)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为( )
A. B. C. D.
5.(2020·山东济南市·中考真题)如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.
6.(2020·江苏徐州市·中考真题)如图,、、、为一个正多边形的顶点,为正多边形的中心,若,则这个正多边形的边数为_______.
7.(2020·云南昆明市·中考真题)如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为_____cm.
考点9. 弧长和扇形的面积
【解题技巧】1).弧长公式:;2).扇形面积公式:或.
1.(2020·广西)如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是( )
A.π B.π C.2π D.2π
第1题 第2题 第3题
2.(2020·辽宁沈阳市·中考真题)如图,在矩形中,,,以点为圆心,长为半径画弧交边于点,连接,则的长为( )
A. B. C. D.
3.(2020·山东淄博市·中考真题)如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O所经过的最短路径的长是( )
A.2π+2 B.3π C. D.+2
4.(2020·云南中考真题)如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )
A. B.1 C. D.
5.(2020·湖北省直辖县级行政单位·中考真题)一个圆锥的底面半径是,其侧面展开图的圆心角是120°,则圆锥的母线长是( )
A. B. C. D.
6.(2020·四川达州市·中考真题)如图,在半径为5的中,将劣弧沿弦翻折,使折叠后的恰好与、相切,则劣弧的长为( )
A. B. C. D.
7.(2020·湖北黄石市·中考真题)如图,在的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作的外接圆,则的长等于_____.
考点10. 圆的综合问题
【解题技巧】
1.(2020·柳州市中考真题)如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.(1)求证:△ACD∽△CFD;(2)若∠CDA=∠GCA,求证:CG为⊙O的切线;(3)若sin∠CAD=,求tan∠CDA的值.
2.(2020·内蒙古鄂尔多斯市·中考真题)我们知道,顶点坐标为(h,k)的抛物线的解析式为y=a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.
(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为 .
(2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.
①连接EC,证明:EC是⊙B的切线;
②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.
3.(2020·黑龙江大庆市·中考真题)如图,在中,,以为直径的交于点,连接,过点作,垂足为,、的延长线交于点.(1)求证:是的切线;(2)求证:;(3)若,,求的长.
4.(2020·山东淄博市·中考真题)如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF⊥BC于点F,设⊙O的半径为R,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)求证:AB•AC=2R•h;(3)设∠BAC=2α,求的值(用含α的代数式表示).
5.(2020·广西中考真题)如图,在中,以为直径的交于点连接且连接并延长交的延长线于点与相切于点.(1)求证:是的切线:(2)连接交于点,求证:;(3)若,求的值.
6.(2020·湖南娄底市·中考真题)如图,点C在以为直径的上,平分交于点D,过D作的垂线,垂足为E.(1)求证:与相切;(2)若,求的长;(3)请用线段、表示的长,并说明理由.
7.(2020·黑龙江哈尔滨市·中考真题)已知是的外接圆,AD为的直径,,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:;
(2)如图2,过点D作,交于点G,点H为GD的中点,连接OH,求证:;
(3)如图3,在(2)的条件下,连接CG,若的面积为,求线段CG的长.
8.(2020·上海中考真题)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.
(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.
相关试卷
这是一份考点17 统计-2022年中考数学高频考点专题突破(全国通用)(原卷版),共19页。试卷主要包含了全面调查,调查的选取,抽样调查样本的选取,频数分布直方图等内容,欢迎下载使用。
这是一份考点16 视图投影、图形变换、尺规作图-2022年中考数学高频考点专题突破(全国通用)(原卷版),共27页。试卷主要包含了投影,平行投影、中心投影、正投影,视图,三视图,三视图的画法等内容,欢迎下载使用。
这是一份考点18 概率-2022年中考数学高频考点专题突破(全国通用)(原卷版),共23页。试卷主要包含了必然事件,不可能事件,随机事件等内容,欢迎下载使用。