(全国通用)备战中考数学一轮复习专题讲义+强化训练 第十九讲 直角三角形与勾股定理(强化训练)
展开备战2022年中考数学一轮复习专题讲义+强化训练(全国通用)
第十九讲 直角三角形与勾股定理
考点一 直角三角形的判定 2
考点二 勾股定理的应用--最短路径 3
考点三 勾股定理的应用二--翻折问题 6
考点四 直角三角形的性质--斜中半 11
考点五 直角三角形有关几何证明 16
考点一 直角三角形的判定
1.下列各组数中,能作为直角三角形的三边长的是( )
A.2,3,4 B.6,8,10 C.1,, D.,,
【解答】解:A、因为22+32≠42,故不能作为直角三角形三边长;
B、因为62+82=102,故能作为直角三角形三边长;
C、因为12+()2≠()2,故不能作为直角三角形三边长;
D、因为()2+()2≠()2,故不能作为直角三角形三边长.
故选:B.
2.满足下列条件的△ABC不是直角三角形的是( )
A.∠A:∠B:∠C=3:4:5 B.BC=1,AC=2,AB=
C.BC:AC:AB=3:4:5 D.BC=1,AC=2,AB=
【解答】解:A.∠A:∠B:∠C=3:4:5,
∴设∠A=3x,∠B=4x,∠C=5x,
∴∠A+∠B+∠C=3x+4x+5x=180°,
∴x=15°,
∴∠C=5x=5×15°=75°,
∴△ABC不是直角三角形,符合题意.
B.∵BC=1,AC=2,AB=,12+22=()2,
∴BC2+AC2=AB2,
满足勾股定理逆定理,故△ABC是直角三角形,不符合题意.
C.∵BC:AC:AB=3:4:5,
∴设BC=3k,AC=4k,AB=5k,
∴(3k)2+(4k)2=(5k)2,
∴BC2+AC2=AB2,
∴满足勾股定理逆定理,
∴△ABC是直角三角形,不符合题意.
D.∵BC=1,AC=2,AB=,12+()2=22,
∴BC2+AB2=AC2,
满足勾股定理逆定理,故△ABC是直角三角形,不符合题意.
故选:A.
3.下列各组数中,不能作为直角三角形三边长度的是( )
A. B.3,4,5 C. D.9,12,15
【解答】解:A.∵()2+22≠()2,
∴以,2,为边不能组成直角三角形,故本选项符合题意;
B.∵32+42=52,
∴以6,8,10为边能组成直角三角形,故本选项不符合题意;
C.∵12+12=()2,
∴以1,1,为边能组成直角三角形,故本选项不符合题意;
D.∵92+122=152,
∴以9,12,15为边能组成直角三角形,故本选项不符合题意.
故选:A.
考点二 勾股定理的应用--最短路径
4.如图,长方体的长为8,宽为10,高为6,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
A. B. C. D.
【解答】解:如图1:(1)AB===6;
(2)AB===2;
(3)AB==2.
所以需要爬行的最短距离是2,
故选:A.
5.如图,圆柱形玻璃杯高为11cm,底面周长为30cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的爬行最短路线长为(杯壁厚度不计)( )
A.12cm B.17cm C.20cm D.25cm
【解答】解:如图:
将杯子侧面展开,
作A关于EF的对称点A′,
则AF+BF为蚂蚁从外壁A处到内壁B处的最短距离,即A′B的长度,
∵A′B====17(cm),
∴蚂蚁从外壁A处到内壁B处的最短距离为17cm,
故选:B.
6.如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )(π取3)m.
A.30 B.28 C.25 D.22
【解答】解:其侧面展开图如图:作点C关于AB的对称点F,连接DF,
∵中间可供滑行的部分的截面是半径为2.5m的半圆,
∴BC=πR=2.5π≈7.5m,AB=CD=20m,
∴CF=15m,
在Rt△CDF中,DF===25(m),
故他滑行的最短距离约为25m.
故选:C.
考点三 勾股定理的应用二--翻折问题
7.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为( )
A. B. C. D.
【解答】解:∵DG=GE,
∴S△ADG=S△AEG=2,
∴S△ADE=4,
由翻折可知,△ADB≌△ADE,BE⊥AD,
∴S△ABD=S△ADE=4,∠BFD=90°,
∴•(AF+DF)•BF=4,
∴•(3+DF)•2=4,
∴DF=1,
∴DB===,
设点F到BD的距离为h,则有•BD•h=•BF•DF,
∴h=,
故选:B.
8.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=( )
A. B. C. D.
【解答】解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,
∴AB=AC=4,∠A=∠B=45°,
过B′作B′H⊥AB与H,
∴△AHB′是等腰直角三角形,
∴AH=B′H=AB′,
∵AB′=AC=,
∴AH=B′H=1,
∴BH=3,
∴BB′===,
∵将△BDE沿DE折叠,得到△B′DE,
∴BF=BB′=,DE⊥BB′,
∴∠BHB′=∠BFE=90°,
∵∠EBF=∠B′BH,
∴△BFE∽△BHB′,
∴=,
∴=,
∴EF=,
故答案为:.
故选:C.
9.如图,在△ABC中,AB=BC=5,AC=,D是BC上一点,连接AD.把△ACD沿AD翻折得到△ADE,且DE⊥AB于点F,连接BE,则点E到BC的距离为( )
A. B.3 C.2 D.
【解答】解:过点A作AG⊥BC,垂足为G,过点B作BH⊥AC,垂足为H,
∵AB=BC=5,
∴AH=CH==,
在Rt△BCH中,
BH2+CH2=BC2,
BH2+()2=52,
解得BH=,
S△ABC=,
,
解得:AG=3,
在Rt△ACG中,
CG2+AG2=AC2,
CG2+33=(2,
解得:CG=1,
由翻折可得,∠ADF=∠ADG,
∵DE⊥AB,
∴∠AGD=∠AFD=90°,
∴△AGD≌△AFD(AAS),
∴AF=AG=3,BF=AB﹣AF=2,
设GD=x,
则DF=x,BD=4﹣x,
在Rt△BDF中,
DF2+BF2=BD2,
x2+22=(4﹣x)2,
解得x=,
∴DE=CD=,BD=BC﹣CD=,
设点E到BC的距离为d,
S,
,
解得d=2.
所以点E到BC的距离为2.
故选:C.
10.如图,在正方形ABCD中,AB=6,M是AD边上的一点,AM:MD=1:2.将△BMA沿BM对折至△BMN,连接DN,则DN的长是( )
A. B. C.3 D.
【解答】解:连接AN交BM于点O,作NH⊥AD于点H.如图:
∵AB=6,AM:MD=1:2.
∴AM=2,MD=4.
∵四边形ABCD是正方形.
∴BM=.
根据折叠性质,AO⊥BM,AO=ON.AM=MN=2.
∴.
∴=.
∴AN=.
∵NH⊥AD.
∴AN2﹣AH2=MN2﹣MH2.
∴.
∴.
∴.
∴.
∴DN=.
故选:D.
考点四 直角三角形的性质--斜中半
11.如图,在△ABC中,tan∠ACB=,D为AC的中点,点E在BC上,连接DE,将△CDE沿着DE翻折,得到△FDE,点C的对应点是点F,EF交AC于点G,当EF⊥EC时,△DGF的面积,连接AF,则AF的长度为( )
A.2 B. C. D.
【解答】解:由题意得,△EDC≌△EDF,
∴∠CED=∠FED,
∵EF⊥EC,
∴∠FED=∠CED=45°,
作DM⊥EF于M,AN⊥EF于N,
设DM=x,则EM=x,
∵∠EFD=∠ACB,
∴,
∵∠GDM=∠ACB,
∴DM∥BC,
∴GM=tan∠GDM•DM=,
∴FG=FM﹣GM=,
∴,
解得:x=,
∴FD=,GD=,AD=CD=FD=5,
∴G是AD的中点,
即AG=DG,
∵∠ANG=∠DMG=90°,∠AGM=∠DGM,
∴△ANG≌△DMG(AAS),
∴GN=GM=,
∴FN=FM﹣NM=2,
∴AN=DM=,
∴AF=.
故选:D.
12.如图,在△ABC中,∠ACB=90°,∠CAB=30°,BC=6,D为AB上一动点(不与点A重合),△AED为等边三角形,过D点作DE的垂线,F为垂线上任一点,G为EF的中点,则线段BG长的最小值是( )
A.6 B.9 C.3 D.6
【解答】解:如图,连接DG,AG,设AG交DE于点H,
∵DE⊥DF,G为EF的中点,
∴DG=GE,
∴点G在线段DE的垂直平分线上,
∵△AED为等边三角形,
∴AD=AE,
∴点A在线段DE的垂直平分线上,
∴AG为线段DE的垂直平分线,
∴AG⊥DE,∠DAG=∠DAE=30°,
∴点G在射线AH上,当BG⊥AH时,BG的值最小,如图所示,设点G'为垂足,
∵∠ACB=90°,∠CAB=30°,
∴∠ACB=∠AG'B,∠CAB=∠BAG',
则在△BAC和△BAG'中,
,
∴△BAC≌△BAG'(AAS).
∴BG'=BC=6,
故选:D.
13.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为( )
A.3 B.4 C.5 D.6
【解答】解:连接OP,
∵PA⊥PB,
∴∠APB=90°,
∵AO=BO,
∴AB=2PO,
若要使AB取得最小值,则PO需取得最小值,
连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,
过点M作MQ⊥x轴于点Q,
则OQ=3、MQ=4,
∴OM=5,
又∵MP′=2,
∴OP′=3,
∴AB=2OP′=6,
故选:D.
二.填空题(共2小题)
14.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为 6 .
【解答】解:如图,连接BO,
∵四边形ABCD是矩形,
∴DC∥AB,∠DCB=90°
∴∠FCO=∠EAO,
在△AOE和△COF中,
,
∴△AOE≌△COF,
∴OE=OF,OA=OC,
∵BF=BE,
∴BO⊥EF,∠BOF=90°,
∵∠FEB=2∠CAB=∠CAB+∠AOE,
∴∠EAO=∠EOA,
∴EA=EO=OF=FC=2,
在Rt△BFO和Rt△BFC中,
,
∴Rt△BFO≌Rt△BFC,
∴BO=BC,
在Rt△ABC中,∵AO=OC,
∴BO=AO=OC=BC,
∴△BOC是等边三角形,
∴∠BCO=60°,∠BAC=30°,
∴∠FEB=2∠CAB=60°,∵BE=BF,
∴△BEF是等边三角形,
∴EB=EF=4,
∴AB=AE+EB=2+4=6.
故答案为6.
15.如图,在△ABC中,AB=6,D、E分别是AB、AC的中点,点F在DE上,且DF=3FE,当AF⊥BF时,BC的长是 8 .
【解答】解:∵AF⊥BF,
∴∠AFB=90°,又D是AB的中点,
∴DF=AB=3,
∵DF=3FE,
∴EF=1,
∴DE=4,
∵D、E分别是AB、AC的中点,
∴BC=2DE=8,
故答案为:8.
考点五 直角三角形有关几何证明
16.如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.
【解答】(1)证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△BDG和△ADC中,
,
∴△BDG≌△ADC,
∴BG=AC,∠BGD=∠C,
∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,
∴DE=BG=EG,DF=AC=AF,
∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,
∴∠EDG+∠FDA=90°,
∴DE⊥DF;
(2)解:∵AC=10,
∴DE=DF=5,
由勾股定理得,EF==5.
17.正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD于E,连接EO,AE.
(1)若∠PBC=α,求∠POE的大小(用含α的式子表示);
(2)用等式表示线段AE与BP之间的数量关系,并证明.
【解答】解:(1)在正方形ABCD中,BC=DC,∠C=90°,
∴∠DBC=∠CDB=45°,
∵∠PBC=α,
∴∠DBP=45°﹣α,
∵PE⊥BD,且O为BP的中点,
∴EO=BO,
∴∠EBO=∠BEO,
∴∠EOP=∠EBO+∠BEO=90°﹣2 α;
(2)BP=.证明如下:
连接OC,EC,
在正方形ABCD中,AB=BC,∠ABD=∠CBD,BE=BE,
∴△ABE≌△CBE(SAS),
∴AE=CE,
设∠PBC=α,
在Rt△BPC中,O为BP的中点,
∴CO=BO=,
∴∠OBC=∠OCB,
∴∠COP=2 α,
由(1)知∠EOP=90°﹣2α,
∴∠EOC=∠COP+∠EOP=90°,
又由(1)知BO=EO,
∴EO=CO.
∴△EOC是等腰直角三角形,
∴EO2+OC2=EC2,
∴EC=OC=,
即BP=,
∴BP=.
18.如图,在△ABC中,AB=BC,∠ABC=90°,点E,F分别在AB,AC上,且AE=EF,点O,M分别为AF,CE的中点.求证:
(1)OM=CE;
(2)OB=OM.
【解答】证明(1)连接OE,
∵AE=EF,O是AF的中点,
∴EO⊥AF,又点M为CE的中点,
∴OM=CE;
(2)连接BM,
∵AB=BC,∠ABC=90°,
∴∠ACB=45°,
∵∠ABC=90°,点M为CE的中点,
∴BM=CE=MC,
∴OM=BM,∠OMB=∠OME+∠BME=2(∠ACE+∠BCE)=90°,
∴OB=OM.
19.如图1,正方形ABCD中,AC是对角线,等腰Rt△CMN中,∠CMN=90°,CM=MN,点M在CD边上,连接AN,点E是AN的中点,连接BE.
(1)若CM=2,AB=6,求AE的值;
(2)求证:2BE=AC+CN;
(3)当等腰Rt△CMN的点M落在正方形ABCD的BC边上,如图2,连接AN,点E是AN的中点,连接BE,延长NM交AC于点F.请探究线段BE、AC、CN的数量关系,并证明你的结论.
【解答】解:(1)∵四边形ABCD是正方形,AB=6,
∴AC=6,
∵等腰Rt△CMN中,∠CMN=90°,CM=MN,CM=2,
∴CN=2,
∵∠ACN=90°,
∴AN===4,
∵点E是AN的中点,
∴AE=2;
(2)如图①,延长NC与AB的延长线交于一点G,
则△ACG是等腰直角三角形,B为AG的中点,
∴AC=CG
∴GN=AC+CN,
∵点E是AN的中点,
∴BE=GN
∴2BE=AC+CN;
(3)BE=(AC﹣CN)
如图②,延长CN与AB的延长线交于一点G,
则△ACG是等腰直角三角形,B为AG的中点,
∴AC=CG,
∴GN=AC﹣CN,
∵点E是AN的中点,
∴BE=GN,
∴BE=(AC﹣CN).
(全国通用)备战中考数学一轮复习专题讲义+强化训练 第六讲 分式方程(强化训练): 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第六讲 分式方程(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第六讲分式方程强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第六讲分式方程强化训练原卷版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十五讲 视图与投影(强化训练): 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十五讲 视图与投影(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第二十五讲视图与投影强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第二十五讲视图与投影强化训练原卷版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十七讲 尺规作图(强化训练): 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十七讲 尺规作图(强化训练),文件包含全国通用备战2022年中考数学一轮复习专题第二十七讲尺规作图强化训练解析版doc、全国通用备战2022年中考数学一轮复习专题第二十七讲尺规作图强化训练原卷版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。