搜索
    上传资料 赚现金
    英语朗读宝

    专题13 二次函数 -2022年中考数学一轮复习精讲 热考题型(全国通用)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题13 二次函数(85题)【真题实战】 -2022年中考数学一轮复习精讲+热考题型(全国通用)(原卷版).docx
    • 解析
      专题13 二次函数(85题)【真题实战】 -2022年中考数学一轮复习精讲+热考题型(全国通用)(解析版).docx
    专题13 二次函数(85题)【真题实战】 -2022年中考数学一轮复习精讲+热考题型(全国通用)(原卷版)第1页
    专题13 二次函数(85题)【真题实战】 -2022年中考数学一轮复习精讲+热考题型(全国通用)(原卷版)第2页
    专题13 二次函数(85题)【真题实战】 -2022年中考数学一轮复习精讲+热考题型(全国通用)(原卷版)第3页
    专题13 二次函数(85题)【真题实战】 -2022年中考数学一轮复习精讲+热考题型(全国通用)(解析版)第1页
    专题13 二次函数(85题)【真题实战】 -2022年中考数学一轮复习精讲+热考题型(全国通用)(解析版)第2页
    专题13 二次函数(85题)【真题实战】 -2022年中考数学一轮复习精讲+热考题型(全国通用)(解析版)第3页
    还剩23页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题13 二次函数 -2022年中考数学一轮复习精讲 热考题型(全国通用)

    展开

    这是一份专题13 二次函数 -2022年中考数学一轮复习精讲 热考题型(全国通用),文件包含专题13二次函数85题真题实战-2022年中考数学一轮复习精讲+热考题型全国通用解析版docx、专题13二次函数85题真题实战-2022年中考数学一轮复习精讲+热考题型全国通用原卷版docx等2份试卷配套教学资源,其中试卷共132页, 欢迎下载使用。
    专题13 二次函数
    1.(2021·四川眉山·中考真题)在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )
    A. B.
    C. D.
    【答案】A
    【分析】
    先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.
    【详解】
    解:当x=0时,y=5,
    ∴C(0,5);
    设新抛物线上的点的坐标为(x,y),
    ∵原抛物线与新抛物线关于点C成中心对称,
    由,;
    ∴对应的原抛物线上点的坐标为;
    代入原抛物线解析式可得:,
    ∴新抛物线的解析式为:;
    故选:A.
    【点睛】
    本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.
    2.(2021·福建·中考真题)二次函数的图象过四个点,下列说法一定正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    【答案】C
    【分析】
    求出抛物线的对称轴,根据抛物线的开口方向和增减性,根据横坐标的值,可判断出各点纵坐标值的大小关系,从而可以求解.
    【详解】
    解:二次函数的对称轴为:
    ,且开口向上,
    距离对称轴越近,函数值越小,

    A,若,则不一定成立,故选项错误,不符合题意;
    B,若,则不一定成立,故选项错误,不符合题意;
    C,若,所以,则一定成立,故选项正确,符合题意;
    D,若,则不一定成立,故选项错误,不符合题意;
    故选:C.
    【点睛】
    本题考查了二次函数的图象与性质及不等式,解题的关键是:根据二次函数的对称轴及开口方向,确定各点纵坐标值的大小关系,再进行分论讨论判断即可.
    3.(2021·山东济南·中考真题)新定义:在平面直角坐标系中,对于点和点,若满足时,;时,,则称点是点的限变点.例如:点的限变点是,点的限变点是.若点在二次函数的图象上,则当时,其限变点的纵坐标的取值范围是( )
    A. B.
    C. D.
    【答案】D
    【分析】
    根据题意,当时,的图象向下平移4个单位,当时,,的图象关于轴对称,据此即可求得其限变点的纵坐标的取值范围,作出函数图像,直观的观察可得到的取值范围
    【详解】
    点在二次函数的图象上,则当时,其限变点的图像即为图中虚线部分,如图,

    当时,的图象向下平移4个单位,当时,的图象关于轴对称,
    从图可知函数的最大值是当时,取得最大值3,
    最小值是当时,取得最小值,

    故选D.
    【点睛】
    本题考查了新定义,二次函数的最值问题,分段讨论函数的最值,可以通过函数图像辅助求解,理解新定义,画出函数图像是解题的关键.
    4.(2021·黑龙江大庆·中考真题)已知函数,则下列说法不正确的个数是( )
    ①若该函数图像与轴只有一个交点,则
    ②方程至少有一个整数根
    ③若,则的函数值都是负数
    ④不存在实数,使得对任意实数都成立
    A.0 B.1 C.2 D.3
    【答案】C
    【分析】
    对于①:分情况讨论一次函数和二次函数即可求解;
    对于②:分情况讨论a=0和a≠0时方程的根即可;
    对于③:已知条件中限定a≠0且a>1或a<0,分情况讨论a>1或a<0时的函数值即可;
    对于④:分情况讨论a=0和a≠0时函数的最大值是否小于等于0即可.
    【详解】
    解:对于①:当a=0时,函数变为,与只有一个交点,
    当a≠0时,,∴,
    故图像与轴只有一个交点时,或,①错误;
    对于②:当a=0时,方程变为,有一个整数根为,
    当a≠0时,方程因式分解得到:,其中有一个根为,故此时方程至少有一个整数根,故②正确;
    对于③:由已知条件得到a≠0,且a>1或a<0
    当a>1时,开口向上,对称轴为,自变量离对称轴越远,其对应的函数值越大,
    ∵ ,
    ∴离对称轴的距离一样,将代入得到,此时函数最大值小于0;
    当a<0时,开口向下,自变量离对称轴越远,其对应的函数值越小,
    ∴时,函数取得最大值为,
    ∵a<0,
    ∴最大值,即有一部分实数,其对应的函数值,故③错误;
    对于④:a=0时,原不等式变形为:对任意实数不一定成立,故a=0不符合;
    a≠0时,对于函数,
    当a>0时开口向上,总有对应的函数值,此时不存在a对对任意实数都成立;
    当a<0时开口向下,此时函数的最大值为,
    ∵a<0,
    ∴最大值,即有一部分实数,其对应的函数值,
    此时不存在a对对任意实数都成立;故④正确;
    综上所述,②④正确,
    故选:C.
    【点睛】
    本题考查二次函数的图像及性质,二次函数与方程之间的关系,分类讨论的思想,本题难度较大,熟练掌握二次函数的性质是解决本类题的关键.
    5.(2021·江苏无锡·中考真题)设,分别是函数,图象上的点,当时,总有恒成立,则称函数,在上是“逼近函数”,为“逼近区间”.则下列结论:
    ①函数,在上是“逼近函数”;
    ②函数,在上是“逼近函数”;
    ③是函数,的“逼近区间”;
    ④是函数,的“逼近区间”.
    其中,正确的有( )
    A.②③ B.①④ C.①③ D.②④
    【答案】A
    【分析】
    分别求出的函数表达式,再在各个x所在的范围内,求出的范围,逐一判断各个选项,即可求解.
    【详解】
    解:①∵,,
    ∴,当时,,
    ∴函数,在上不是“逼近函数”;
    ②∵,,
    ∴,当时,,
    函数,在上是“逼近函数”;
    ③∵,,
    ∴,当时,,
    ∴是函数,的“逼近区间”;
    ④∵,,
    ∴,当时,,
    ∴不是函数,的“逼近区间”.
    故选A
    【点睛】
    本题主要考查一次函数与二次函数的性质,掌握一次函数与二次函数的增减性,是解题的关键.
    6.(2021·内蒙古·中考真题)已知二次函数的图象经过第一象限的点,则一次函数的图象不经过( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    【答案】C
    【分析】
    根据直角坐标系和象限的性质,得;根据二次函数的性质,得,从而得,通过计算即可得到答案.
    【详解】
    ∵点在第一象限


    ∵二次函数的图象经过第一象限的点



    当时,,即和y轴交点为:
    当时,,即和x轴交点为:
    ∵,
    ∴一次函数的图象不经过第三象限
    故选:C.
    【点睛】
    本题考查了二次函数、一次函数、直角坐标系的知识;解题的关键是熟练掌握二次函数、一次函数、直角坐标系的性质,从而完成求解.
    7.(2021·湖北鄂州·中考真题)二次函数的图象的一部分如图所示.已知图象经过点,其对称轴为直线.下列结论:①;②;③;④若抛物线经过点,则关于的一元二次方程的两根分别为,5,上述结论中正确结论的个数为( )

    A.1个 B.2个 C.3个 D.4个
    【答案】C
    【分析】
    根据二次函数的图象与性质进行逐项判断即可求解.
    【详解】
    解:①由图象可知,a<0,b>0,c>0,
    ∴abc<0,故①正确;
    ②∵对称轴为直线x= =1,且图象与x轴交于点(﹣1,0),
    ∴图象与x轴的另一个交点坐标为(3,0),b=﹣2a,
    ∴根据图象,当x=2时,y=4a+2b+c>0,故②错误;
    ③根据图象,当x=﹣2时,y=4a﹣2b+c=4a+4a+c=8a+c<0,故③正确;
    ④∵抛物线经过点,
    ∴根据抛物线的对称性,抛物线也经过点,
    ∴抛物线与直线y=n的交点坐标为(﹣3,n)和(5,n),
    ∴一元二次方程的两根分别为,5,
    故④正确,
    综上,上述结论中正确结论有①③④,
    故选:C.
    【点睛】
    本题考查二次函数的图象与性质,熟练掌握二次函数的图象与系数之间的关系是解答的关键.
    8.(2021·四川广元·中考真题)将二次函数的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线与新函数的图象恰有3个公共点时,b的值为( )

    A.或 B.或 C.或 D.或
    【答案】A
    【分析】
    由二次函数解析式,可求与x轴的两个交点A、B,直线表示的图像可看做是直线的图像平移b个单位长度得到,再结合所给函数图像可知,当平移直线经过B点时,恰与所给图像有三个交点,故将B点坐标代入即可求解;当平移直线经过C点时,恰与所给图像有三个交点,即直线与函数关于x轴对称的函数图像只有一个交点,即联立解析式得到的方程的判别式等于0,即可求解.
    【详解】
    解:由知,当时,即

    解得:

    作函数的图像并平移至过点B时,恰与所给图像有三个交点,此时有:


    平移图像至过点C时,恰与所给图像有三个交点,即当时,只有一个交点
    当的函数图像由的图像关于x轴对称得到
    当时对应的解析式为
    即,整理得:


    综上所述或
    故答案是:A.

    【点睛】
    本题主要考察二次函数翻折变化、交点个数问题、函数图像平移的性质、二次函数与一元二次方程的关系等知识,属于函数综合题,中等难度.解题的关键是数形结合思想的运用,从而找到满足题意的条件.
    9.(2021·四川凉山·中考真题)二次函数的图象如图所示,则下列结论中不正确的是( )

    A. B.函数的最大值为
    C.当时, D.
    【答案】D
    【分析】
    根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项.
    【详解】
    解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴为直线x=-1,
    ∴,即b=2a,则b<0,
    ∵抛物线与y轴交于正半轴,
    ∴c>0,
    则abc>0,故A正确;
    当x=-1时,y取最大值为,故B正确;
    由于开口向上,对称轴为直线x=-1,
    则点(1,0)关于直线x=-1对称的点为(-3,0),
    即抛物线与x轴交于(1,0),(-3,0),
    ∴当时,,故C正确;
    由图像可知:当x=-2时,y>0,
    即,故D错误;
    故选D.
    【点睛】
    本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).
    10.(2021·湖北随州·中考真题)如图,已知抛物线的对称轴在轴右侧,抛物线与轴交于点和点,与轴的负半轴交于点,且,则下列结论:①;②;③;④当时,在轴下方的抛物线上一定存在关于对称轴对称的两点,(点在点左边),使得.其中正确的有( )

    A.1个 B.2个 C.3个 D.4个
    【答案】B
    【分析】
    依据抛物线的图像和性质,根据题意结合二次函数图象与系数的关系,逐条分析结论进行判断即可
    【详解】
    ①从图像观察,开口朝上,所以,
    对称轴在轴右侧,所以,
    图像与轴交点在x轴下方,所以
    ,所以①不正确;
    ②点和点,与轴的负半轴交于点,且
    设代入,得:

    ,所以②正确;
    ③,
    设抛物线解析式为:过
    ,所以③正确;
    ④如图:设交点为P,对称轴与x轴交点为Q,顶点为D,

    根据抛物线的对称性, 是等腰直角三角形,


    又对称轴

    由顶点坐标公式可知

    由题意,解得 或者
    由①知,所以④不正确.
    综上所述:②③正确共2个
    故选B.
    【点睛】
    本题考查了二次函数图象与系数的关系,利用了数形结合的思想,二次函数(a≠0),a的符号由抛物线的开口决定;b的符号由a及对称轴的位置确定;c的符号由抛物线与y轴交点的位置确定,此外还有注意利用特殊点1,-1及2对应函数值的正负来解决是解题的关键.
    11.(2021·湖南株洲·中考真题)二次函数的图像如图所示,点 在轴的正半轴上,且,设,则 的取值范围为( )

    A. B.
    C. D.
    【答案】D
    【分析】
    由图像可得,,当,,并与轴交于之间,得,据悉可得,据此求解即可.
    【详解】
    解:由图像可知,图像开口向下,并与轴相交于正半轴,
    ∴,,
    当,,
    ∵,并由图像可得,二次函数与轴交于之间,

    ∴,
    故选:D.
    【点睛】
    本题考查二次函数图象及性质,熟悉相关性质是解题的关键.
    12.(2021·湖南张家界·中考真题)若二次函数的图象如图所示,则一次函数与反比例函数在同一个坐标系内的大致图象为( )

    A. B.
    C. D.
    【答案】D
    【分析】
    先根据抛物线的开口方向确定a<0,对称轴可确定b的正负,与y轴的交点可知c>0,然后逐项排查即可.
    【详解】
    解:∵抛物线开口方向向下
    ∴a<0,
    ∵抛物线对称轴
    ∴b>0
    ∵抛物线与y轴的交点在y轴的正半轴
    ∴c>0
    ∴的图像过二、一、四象限,的图象在二、四象限
    ∴D选项满足题意.
    故选D.
    【点睛】
    本题主要考查了二次函数的特征、一次函数、反比例函数的图象,牢记各种函数图象的特点成为解答本题的关键.
    13.(2021·四川达州·中考真题)如图,已知抛物线(,,为常数,)经过点,且对称轴为直线,有下列结论:①;②;③;④无论,,取何值,抛物线一定经过;⑤.其中正确结论有( )

    A.1个 B.2个 C.3个 D.4个
    【答案】D
    【分析】
    ①根据图像开口向上,对称轴位置,与y轴交点分别判断出a,b,c的正负
    ②根据对称轴公式,判断的大小关系
    ③根据时,,比较与0的大小;
    ④根据抛物线的对称性,得到与时的函数值相等结合②的结论判断即可
    ⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.
    【详解】
    ①图像开口朝上,故 ,根据对称轴“左同右异”可知,
    图像与y轴交点位于x轴下方,可知c

    相关试卷

    第13讲+二次函数图象与性质(24题型)(练习)-2024年中考数学一轮复习讲练测(全国通用):

    这是一份第13讲+二次函数图象与性质(24题型)(练习)-2024年中考数学一轮复习讲练测(全国通用),文件包含第12讲反比例函数的图象性质及应用练习原卷版docx、第12讲反比例函数的图象性质及应用练习解析版docx等2份试卷配套教学资源,其中试卷共217页, 欢迎下载使用。

    2023年中考数学一轮复习--专题13 二次函数解析式的确定及图像变换(考点精讲)(全国通用):

    这是一份2023年中考数学一轮复习--专题13 二次函数解析式的确定及图像变换(考点精讲)(全国通用),共12页。

    专题05 二次根式(知识点清单 思维导图 热考题型)-2022年中考数学一轮复习精讲 热考题型(全国通用):

    这是一份专题05 二次根式(知识点清单 思维导图 热考题型)-2022年中考数学一轮复习精讲 热考题型(全国通用),文件包含专题05二次根式热考题型-2022年中考数学一轮复习精讲+热考题型全国通用解析版docx、专题05二次根式热考题型-2022年中考数学一轮复习精讲+热考题型全国通用原卷版docx、专题05二次根式知识点清单-2022年中考数学一轮复习精讲+热考题型全国通用docx、专题05二次根式思维导图-2022年中考数学一轮复习精讲+热考题型全国通用pdf等4份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map