高考数学(理数)一轮复习课时作业32《等比数列及其前n项和》(原卷版)
展开课时作业32 等比数列及其前n项和
1.已知正项等比数列{an}满足a3=1,a5与a4的等差中项为,则a1的值为( )
A.4 B.2
C. D.
2.已知等比数列{an}中,a5=3,a4a7=45,则的值为( )
A.3 B.5
C.9 D.25
3.等比数列{an}的前n项和为Sn,若对任意的正整数n,Sn+2=4Sn+3恒成立,则a1的值为( )
A.-3 B.1
C.-3或1 D.1或3
4.已知数列{an}是等比数列,数列{bn}是等差数列,若a1·a6·a11=-3,b1+b6+b11=7π,则tan的值是( )
A.- B.-1
C.- D.
5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为( )
A.f B.f
C.f D.f
6.在正项数列{an}中,a1=2,点(,)(n≥2)在直线x-y=0上,则数列{an}的前n项和Sn等于( )
A.2n+1-2 B.2n+1
C.2- D.2-
7.设{an}是由正数组成的等比数列,公比q=2,且a1·a2·a3·…·a30=230,则a3·a6·a9·…·a30=( )
A.210 B.220 C.216 D.215
8.已知数列{an}的前n项和为Sn,点(n,Sn+3)(n∈N*)在函数y=3×2x的图象上,等比数列{bn}满足bn+bn+1=an(n∈N*),其前n项和为Tn,则下列结论正确的是( )
A.Sn=2Tn B.Tn=2bn+1
C.Tn>an D.Tn<bn+1
9.在各项都为正数的等比数列{an}中,若a2 018=,则+的最小值为 .
10.已知等比数列{an}的公比不为-1,设Sn为等比数列{an}的前n项和,S12=7S4,则= .
11.设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)证明:为等比数列.
12.已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*.
(1)若2a2,a3,a2+2成等差数列,求数列{an}的通项公式;
(2)设双曲线x2-=1的离心率为en,且e2=,证明:e1+e2+…+en>.
13.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应偿还a升,b升,c升,1斗为10升,则下列判断正确的是( )
A.a,b,c依次成公比为2的等比数列,且a=
B.a,b,c依次成公比为2的等比数列,且c=
C.a,b,c依次成公比为的等比数列,且a=
D.a,b,c依次成公比为的等比数列,且c=
14.已知数列{an}满足a1a2a3…an=2n2(n∈N*),且对任意n∈N*都有++…+<t,则实数t的取值范围为( )
A. B.C. D.
15.各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,a2=3,则数列{an}的通项公式为 .
16.已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(1)求数列{an}的通项公式;
(2)证明:Sn+≤(n∈N*).
2023年高考数学(理数)一轮复习课时29《等比数列及其前n项和》达标练习(含详解): 这是一份2023年高考数学(理数)一轮复习课时29《等比数列及其前n项和》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时29《等比数列及其前n项和》达标练习含详解doc、2023年高考数学理数一轮复习课时29《等比数列及其前n项和》达标练习教师版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
高考数学(理数)一轮复习检测卷:5.3《等比数列及其前n项和》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:5.3《等比数列及其前n项和》 (学生版),共3页。
高考数学(文数)一轮复习课时练习:5.3《等比数列及其前n项和》(学生版): 这是一份高考数学(文数)一轮复习课时练习:5.3《等比数列及其前n项和》(学生版)