[中考专题]2022年北京市朝阳区中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析)
展开2022年北京市朝阳区中考数学三年高频真题汇总 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
2、二次函数y=(x+2)2+5的对称轴是( )
A.直线x= B.直线x=5 C.直线x=2 D.直线x=﹣2
3、的相反数是( )
A. B. C. D.3
4、在0,,1.333…,,3.14中,有理数的个数有( )
A.1个 B.2个 C.3个 D.4个
5、下列方程中,属于二元一次方程的是( )
A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=1
6、下列命题正确的是
A.零的倒数是零
B.乘积是1的两数互为倒数
C.如果一个数是,那么它的倒数是
D.任何不等于0的数的倒数都大于零
7、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
8、已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是( )
A.10π B.12π C.16π D.20π
9、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则
A.1 B.2 C.4 D.8
10、如图,为直线上的一点,平分,,,则的度数为( )
A.20° B.18° C.60° D.80°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知正方形ABCD的边长为5,点E,F分别是AB,BC边上的点,且∠EDF=45°,将△ADE绕点D逆时针旋转90°得到△CDM.若AE=2,则MF的长为_______.
2、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.
3、如图,在平面直角坐标系中,二次函数 y=x2﹣2x+c 的图象与 x 轴交于 A、C 两点,与 y轴交于点 B(0,﹣3),若 P 是 x 轴上一动点,点 D(0,1)在 y 轴上,连接 PD,则 C 点的坐标是_____,PD+PC 的最小值是______.
4、如图,东方明珠塔是上海的地标建筑之一,它的总高度是468米,塔身自下而上共有3个球体,其中第2个球体的位置恰好是总高度的黄金分割点,且它到地面的距离大于到塔顶的距离,则第2个球体到地面的距离是米_________.(结果保留根号).
5、不等式的最大整数解是_______.
三、解答题(5小题,每小题10分,共计50分)
1、 “疫情未结束,防疫绝不放松”.为了了解同学们掌握防疫知识的情况,增强防疫意识,某校开展了“全民行动•共同抗疫”的自我防护知识网上答题竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:
七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82
八年级10名学生的竞赛成绩在C组中的数据是94,90,94
七、八年级抽取的学生竞赛成绩统计表
年级 | 平均数 | 中位数 | 众数 | 方差 |
七年级 | 92 | 90 | c | 52 |
八年级 | 92 | b | 100 | 50.4 |
八年抽取的学生竞赛成绩扇形统计图
根据以上信息,解答下列问题:
(1)上述图表中a= ,b= ,c= ;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握自我防护知较好?请说明理由(一条理由即可);
(3)该校七、八年级共640人参加了此次网上答题竞赛活动,估计参加竞赛活动成绩优秀(x≥90)的学生人数是多少?
2、如图,四边形ABCD内接⊙O,∠C=∠B.
(1)如图1,求证:AB=CD;
(2)如图2,连接BO并延长分别交⊙O和CD于点F、E,若CD=EB,CD⊥EB,求tan∠CBF;
(3)如图3,在(2)的条件下,在BF上取点G,连接CG并延长交⊙O于点I,交AB于H,EF∶BG=1∶3,EG=2,求GH的长.
3、解方程:
(1)3(2x-3)=18-(3-2x) (2)
4、如图,直线AB与CD相交于点O,OE 是∠COB的平分线,OE⊥OF.
(1)图中∠BOE的补角是 ;
(2)若∠COF=2∠COE,求△BOE 的度数;
(3)试判断 OF是否平分∠AOC,请说明理由.
5、如图,点O和的三个顶点正好在正方形网格的格点上,按要求完成下列问题:
(1)画出绕点O顺时针旋转后的;
(2)画出绕点O旋转后的.
-参考答案-
一、单选题
1、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
2、D
【分析】
直接根据二次函数的顶点式进行解答即可.
【详解】
解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2.
故选:D.
【点睛】
本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.
3、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
4、D
【分析】
根据有理数的定义:整数和分数统称为有理数,进行求解即可.
【详解】
解:0是整数,是有理数;
是无限不循环小数,不是有理数;
是分数,是有理数;
是分数,是有理数;
3.14是有限小数,是分数,是有理数,
故选D.
【点睛】
此题考查有理数的定义,熟记定义并运用解题是关键.
5、B
【分析】
二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.
【详解】
解:A、xy-3=1,是二元二次方程,故本选项不合题意;
B、4x-2y=3,属于二元一次方程,故本选项符合题意;
C、x+=4,是分式方程,故本选项不合题意;
D、x2-4y=1,是二元二次方程,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
6、B
【分析】
根据倒数的概念、有理数的大小比较法则判断.
【详解】
解:、零没有倒数,本选项说法错误;
、乘积是1的两数互为倒数,本选项说法正确;
、如果,则没有倒数,本选项说法错误;
、的倒数是,,则任何不等于0的数的倒数都大于零说法错误;
故选:.
【点睛】
本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键.
7、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
8、D
【分析】
首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解.
【详解】
解:圆锥的底面半径是:,则底面周长是:,
则圆锥的侧面积是:.
故选:D.
【点睛】
本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式.
9、B
【分析】
利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.
【详解】
解:设,
∵点F为AB的中点,
∴.
∵,
∴,即,
解得:.
故选B.
【点睛】
本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.
10、A
【分析】
根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.
【详解】
解:∵OC平分,
∴,
∴,
∵,
∴,
∴,
故选:A.
【点睛】
本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.
二、填空题
1、##
【分析】
由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=2,正方形的边长为5,用ABAE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BMFM=BMEF=7x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为MF的长.
【详解】
解:∵△ADE逆时针旋转90°得到△CDM,
∴∠A=∠DCM=90°,DE=DM,
∴∠FCM=∠FCD+∠DCM=180°,
∴F、C、M三点共线,
∵∠EDM=∠EDC+∠CDM=∠EDC+∠ADE=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDF=45°,
在△DEF和△DMF中,
,
∴△DEF≌△DMF(SAS),
∴EF=MF,
设EF=MF=x,
∵AE=CM=2,且BC=5,
∴BM=BC+CM=5+2=7,
∴BF=BMMF=BMEF=7x,
∵EB=ABAE=52=3,
在Rt△EBF中,由勾股定理得EB2+BF2=EF2,
即32+(7x)2=x2,
解得:,
∴MF=.
故答案为:.
【点睛】
此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.
2、3
【分析】
用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案
【详解】
用“”表示正面朝上,用“”表示正面朝下,
开始时
第一次
第二次
第三次
至少翻转3次能使所有硬币都反面朝上.
故答案为:3
【点睛】
本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键.
3、(3,0) 4
【分析】
过点P作PJ⊥BC于J,过点D作DH⊥BC于H.根据,求出的最小值即可解决问题.
【详解】
解:过点P作PJ⊥BC于J,过点D作DH⊥BC于H.
∵二次函数y=x2﹣2x+c的图象与y轴交于点B(0,﹣3),
∴c=﹣3,
∴二次函数的解析式为y=x2﹣2x﹣3,令y=0,x2﹣2x﹣3=0,
解得x=﹣1或3,
∴A(﹣1,0),C(3,0),
∴OB=OC=3,
∵∠BOC=90°,
∴∠OBC=∠OCB=45°,
∵D(0,1),
∴OD=1,BD=1-(-3)=4,
∵DH⊥BC,
∴∠DHB=90°,
设,则,
∵,
∴,
∴,
∴,
∵PJ⊥CB,
∴,
∵∠PCJ=45°,
∴∠CPJ=90°-∠PCJ=45°,
∴PJ=JC,
根据勾股定理
∴,
∴,
∵,
∴,
∴PD+PJ的最小值为,
∴的最小值为4.
故答案为: (3,0),4.
【点睛】
本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,勾股定理,垂线段最短等知识,解题的关键是学会用转化的思想思考问题.
4、
【分析】
根据黄金分割点的概念,结合图形可知第2个球体到塔底部的距离是较长线段,进一步计算出长度.
【详解】
解:设第2个球体到塔底部的距离为,
根据题意得:,
解得:,
第2个球体到塔底部的距离为米.
故答案为:.
【点睛】
本题考查了黄金分割的概念,解题的关键是掌握如果线段上一点把线段分割为两条线段,,当,即时,则称点是线段的黄金分割点.
5、2
【分析】
首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.
【详解】
解:移项,得:,
合并同类项,得:,
系数化成1得:,
则最大整数解是:2.
故答案是:2.
【点睛】
本题主要考查不等式的整数解,关键在于求解不等式.
三、解答题
1、
(1)a=40,b=94,c=90和96
(2)八年级,理由见解析
(3)416人
【分析】
(1)根据频率=频数÷总数,中位数、众数的计算方法进行计算即可;
(2)比较方差的大小得出答案;
(3)求出七、八年级优秀人数所占的百分比即可.
【小题1】
解:八年级10名学生的竞赛成绩在C组中的数据是:94,94,90,
∴C组所占的百分比为3÷10×100%=30%,
∵1-10%-20%-30%=40%,
即a=40,
八年级A组的有2人,B组的有1人,C组有3人,D组的有4人,将这10人的成绩从小到大排列,处在中间位置的两个数都是94,因此中位数是94,即b=94,
七年级10名学生成绩出现次数最多的是90和96,因此众数是90和96,即c=90和96,
故答案为:40,94,90和96;
【小题2】
八年级学生掌握自我防护知较好,理由:
∵七年级的方差为52,八年级的方差是50.4,而52>50.4,
∴八年级学生的成绩较为稳定,
∴八年级学生掌握自我防护知较好;
【小题3】
640×=416(人),
答:参加竞赛活动成绩优秀(x≥90)的学生人数是416人.
【点睛】
本题考查中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数以及方差的计算方法是正确解答的关键.
2、(1)见解析;(2);(3)
【分析】
(1)过点D作DE∥AB交BC于E,由圆内接四边形对角互补可以推出∠B+∠A=180°,证得AD∥BC,则四边形ABED是平行四边形,即可得到AB=DE,∠DEC=∠B=∠C,这DE=CD=AB;
(2)连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x,由垂径定理可得,∠CEB=∠CEF=∠FCB=90°,则∠FBC+∠F=∠FCE+∠F=90°,可得∠FBC=∠FCE;由勾股定理得,则,
解得,则;
(3)EF:BG=1:3,即则 解得,则,,,如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,分别求出G点坐标为,C点坐标为;A点坐标为
然后求出直线CG的解析式为,直线AB的解析式为,即可得到H的坐标为(,),则.
【详解】
解:(1)如图所示,过点D作DE∥AB交BC于E,
∵四边形ABCD是圆O的圆内接四边形,
∴∠A+∠C=180°,
∵∠B=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABED是平行四边形,
∴AB=DE,∠DEC=∠B=∠C,
∴DE=CD=AB;
(2)如图所示,连接OC,FC,
设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x
∵CD⊥EB,BF是圆O的直径,
∴,∠CEB=∠CEF=∠FCB=90°,
∴∠FBC+∠F=∠FCE+∠F=90°,
∴∠FBC=∠FCE;
∵,
∴,
∴,
解得,
∴;
(3)∵EF:BG=1:3,即
∴ ,即
∴,
解得,
∴,
∴,,
如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,
∴,
∴,,
∵,
∴,,
∴,,
∴,,
∴G点坐标为(,),C点坐标为(,0);
∵,
∴,
∵∠ABC=∠ECB,
∴,
∴,
∵,
∴,
∴,
∴,
∴A点坐标为(,)
设直线CG的解析式为,直线AB的解析式为,
∴,,
∴,,
∴直线CG的解析式为,直线AB的解析式为,
联立,
解得,
∴H的坐标为(,),
∴.
【点睛】
本题主要考查了圆内接四边形的性质,平行四边形的性质与判定,等腰三角形的性质与判定,解直角三角形,一次函数与几何综合,垂径定理,勾股定理,两点距离公式,解题的关键在于能够正确作出辅助线,利用数形结合的思想求解.
3、(1)6:(2)
【分析】
(1)按去括号、移项、合并同类项、系数化为1的步骤解答即可;
(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤解答即可.
【详解】
解:(1)3(2x-3)=18-(3-2x)
去括号得:6x-9=18-3+2x
移项得:4x=24
系数化为1得:x=6;
(2)
去分母得:6-(2-x)=3(x+1)
去括号得:6-2+x=3x+3
移项得:-2x=-1
系数化为1得:x=.
【点睛】
本题主要考查了解一元一次方程,解一元一次方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1.
4、(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.
【分析】
(1)根据补角的定义,依据图形可直接得出答案;
(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;
(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.
【详解】
解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE
∴∠BOE的补角是∠AOE,∠DOE
故答案为:∠AOE或∠DOE;
(2)∵OE⊥OF.∠COF=2∠COE,
∴∠COF=×90°=60°,∠COE=×90°=30°,
∵OE是∠COB的平分线,
∴∠BOE=∠COE=30°;
(3)OF平分∠AOC,
∵OE是∠COB的平分线,OE⊥OF.
∴∠BOE=∠COE,∠COE+∠COF=90°,
∵∠BOE+∠EOC+∠COF+∠FOA=180°,
∴∠COE+∠FOA=90°,
∴∠FOA=∠COF,
即,OF平分∠AOC.
【点睛】
考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.
5、
(1)见解析
(2)见解析
【分析】
把各点连接至点O,再把每根连线旋转要求的度数即可得到旋转后的各个点,再连接这些点即可得到旋转后的图像.
(1)
把各点连接至点O,再把每根连线顺时针旋转90°即可得到旋转后的各个点,再连接这些点即可得到旋转后的
(2)
把各点连接至点O,再把每根连线顺时针旋转180°即可得到旋转后的各个点,再连接这些点即可得到旋转后的,由于顺时针旋转180°和逆时针旋转180°效果相同,故该题只存在一种可能:
【点睛】
本题考查图形的旋转的作图,掌握连接旋转中心和图片中的点是本题关键.
【高频真题解析】2022年北京市海淀区中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解): 这是一份【高频真题解析】2022年北京市海淀区中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解),共28页。
[中考专题]2022年北京市朝阳区中考数学真题汇总 卷(Ⅱ)(含答案详解): 这是一份[中考专题]2022年北京市朝阳区中考数学真题汇总 卷(Ⅱ)(含答案详解),共29页。试卷主要包含了下列利用等式的性质,错误的是,下列图形是中心对称图形的是.,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
[中考专题]2022年北京市朝阳区中考数学历年真题汇总 卷(Ⅲ)(含答案详解): 这是一份[中考专题]2022年北京市朝阳区中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共25页。试卷主要包含了在以下实数中等内容,欢迎下载使用。

