初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共23页。试卷主要包含了点P,如果点P等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是( )A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)2、在平面直角坐标系xOy中,点M(1,2)关于x轴对称点的坐标为( )A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)3、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.24、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A.先向左平移4个单位长度,再向上平移4个单位长度B.先向左平移4个单位长度,再向上平移8个单位长度C.先向右平移4个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向下平移8个单位长度5、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)6、若点在第一象限,则a的取值范围是( )A. B. C. D.无解7、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)8、点P(-3,4)到坐标原点的距离是( )A.3 B.4 C.-4 D.59、如果点P(﹣5,b)在第二象限,那么b的取值范围是( )A.b≥0 B.b≤0 C.b<0 D.b>010、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )A.(2,) B.(,) C.(2,3) D.(3,)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点到轴的距离是________.2、平面上的点与坐标(有序实数对)是______的.3、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标______;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为______.4、在平面直角坐标系中,点A(4,﹣3)到x轴的距离是___.5、在平面直角坐标系中,若点P的坐标为(x,y),点Q的坐标为(mx+y,x+my),则称点Q是点P的m级派生点,例如点P(1,2)(3×1+2,1+3×2),即Q(5,7).如图点Q(﹣5,4)是点P(x,y)的﹣级派生点,点A在x轴上,且S△APQ=4,则点A的坐标为 _____.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).(1)如图1,在BC上找一点P,使∠BAP=45°;(2)如图2,作△ABC的高BH.2、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;(2)在图中作出A1B1C1关于y轴对称的A2B2C2;(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 .3、作图题:如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.(1)画出关于x轴对称的图形并写出顶点,的坐标;(2)已知P为y轴上一点,若与的面积相等,请直接与出点P的坐标.4、如图,在平面直角坐标系中有,两点,坐标分别为,,已知点的坐标为(1)确定平面直角坐标系,并画出;(2)请画出关于轴对称的图形,并直接写出的面积;(3)若轴上存在一点,使的值最小.请画图确定点的位置,并直接写出的最小值.5、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标). -参考答案-一、单选题1、C【解析】【分析】平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.【详解】解:点A(2,3)关于x轴的对称的点B(2,﹣3),故选:C.【点睛】本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.2、A【解析】【分析】根据平面直角坐标系中,关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数即可求解.【详解】解:点M(1,2)关于x轴的对称点的坐标为(1,-2);故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特征,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).3、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.4、B【解析】【分析】利用平移中点的变化规律求解即可.【详解】解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),∴点的横坐标减少4,纵坐标增加8,∴先向左平移4个单位长度,再向上平移8个单位长度.故选:B.【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.6、B【解析】【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.7、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.8、D【解析】【分析】利用两点之间的距离公式即可得.【详解】解:点到坐标原点的距离是,故选:D.【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.9、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,∴b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.10、C【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,据此求解即可得.【详解】解:点关于x轴的对称点的坐标为:.故选:C.【点睛】此题主要考查了关于x轴对称点的特点,熟练掌握坐标变换是解题关键.二、填空题1、2【解析】【分析】由点到坐标轴的距离定义可知点到轴的距离是2.【详解】解:∵点A的纵坐标为-2∴点到轴的距离是故答案为:2.【点睛】本题考查了点到坐标轴的距离,点P的坐标为,那么点P到x轴的距离为这点纵坐标的绝对值,即,点P到y轴的距离为这点横坐标的绝对值,即.2、一一对应【解析】略3、 或##或【解析】【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心.【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5).【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.4、3【解析】【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:点A(4,﹣3)到x轴的距离是3.故答案为:3.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与横(纵)坐标的关系是解答的关键.5、 (6,0)或(2,0)【解析】【分析】根据派生点的定义,可列出关于x,y的二元一次方程,求出x、y,即得出P点的坐标.设点A坐标为(t,0),根据,即可列出,解出t的值,即得到A点坐标.【详解】根据点Q(-5,4)是点P(x,y)的级派生点,∴,解得:,∴P点坐标为(4,0).设点A坐标为(t,0),∵,∴,解得:或∴A点坐标为(6,0)或(2,0).故答案为(6,0)或(2,0).【点睛】本题考查坐标与图形的性质,二元一次方程组的应用以及绝对值方程的应用.理解派生点的定义,根据派生点求出P点坐标是解答本题的关键.三、解答题1、(1)见解析;(2)见解析【解析】【分析】(1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;(2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.【详解】解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求, 理由如下:根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,∴△ABM≌△BNQ,∴AB=BN,∠ABM=∠BNQ,∴∠BAP=∠BNP,∵∠NBQ+∠BNQ=90°,∴∠ABM +∠BNQ=90°,∴∠ABN=90°,∴∠BAP=∠BNP=45°;(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.理由如下:过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,∴△ACD≌△QBG,∴∠ACD=∠QBG,∵∠QBG+∠BQG=90°,∴∠ACD +∠BQG=90°,∴∠CHQ=90°,∴BH⊥AC,即BH为△ABC的高.【点睛】本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.2、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)【解析】【分析】(1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)由题意得:P(﹣a﹣4,b﹣5).故答案为:(﹣a﹣4,b﹣5);【点睛】本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.3、 (1)作图见解析,A1(0,-1),C1(4,-4)(2)(0,6)或(0,-4)【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)设P(0,m),构建方程求解即可.(1)解:作出△ABC关于x轴对称的△A1B1C1如图所示.△A1B1C1顶点坐标为:A1(0,-1),C1(4,-4).(2) 设P(0,m),由题意,,解得m=6或-4,∴点P的坐标为(0,6)或(0,-4).【点睛】本题考查作图-轴对称变换三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、 (1)图见解析;(2)图见解析,的面积为6;(3)点M的位置见解析,的最小值为【解析】【分析】(1)根据A、B两点的坐标确定平面直角坐标系,再描出点C的坐标,然后顺次连接A、B、C三点即可画出△ABC;(2)根据坐标与图形变换-轴对称即可画出,根据对称性质求解△ABC的面积即可;(3)连接AB1交x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,最小值为AB1的长,利用点A、B坐标求解AB1即可.(1)解,如图,平面直角坐标系和△ABC即为所求:(2)解:如图,即为所求:由图知:=S△ABC==6;(3)解:如图,连接AB1交x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,即点M即为所求,最小值为AB1的长,∵A(2,3)、B1(6,-1),∴AB1==,∴的最小值为.【点睛】本题考查平面直角坐标系、作图-轴对称变换、坐标与图形、轴对称-最短路线问题、三角形的面积公式,正确作出图形是解答的关键.5、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【解析】【分析】先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共21页。试卷主要包含了已知点A,点关于轴对称点的坐标为等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题,共22页。试卷主要包含了点关于轴对称点的坐标为,在下列说法中,能确定位置的是,下列各点中,在第二象限的点是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共24页。试卷主要包含了点A关于y轴的对称点A1坐标是,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。