![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系专题训练试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12766033/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系专题训练试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12766033/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系专题训练试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12766033/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共28页。试卷主要包含了在平面直角坐标系中,点P,已知点A,在平面直角坐标系中,点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )A.-1008 B.-1010 C.1012 D.-10122、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A.陇海路以北 B.工人路以西C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角3、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)4、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1 B. C.7 D.5、在平面直角坐标系中,点P(-3,-3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、若点在第一象限,则a的取值范围是( )A. B. C. D.无解7、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.28、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是( )A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)9、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为( )A. B. C. D.10、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、,是平面直角坐标系中的两点,线段长度的最小值为 __.2、已知点是第二象限的点,则的取值范围是______.3、在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1⩾S2,那么点P的纵坐标yp的取值范围是 ________.4、如图,已知在平面直角坐标系中,点A(2,﹣2)、点B(﹣3,4)、点C(﹣5,0),那么△ABC的面积等于 ___.5、在平面直角坐标系中,点A的坐标为,将点A向上平移两个单位后刚好落在x轴上,则m的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC的三个顶点分别为A(-2,4)、B(-6,0)、C(-1,0).(1)将△ABC沿y轴翻折,画出翻折后图形△A1B1C1,并写出点A1的坐标;(2)在y轴上确定一点P,使AP+PB的值最小,直接写出点P的坐标;(3)若△DBC与△ABC全等,请找出符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.2、对于面积为S的三角形和直线l,将该三角形沿直线l折叠,重合部分的图形面积记为,定义为该三角形关于直线l的对称度.如图,将面积为S的ABC沿直线l折叠,重合部分的图形为,将的面积记为,则称为ABC关于直线l的对称度.在平面直角坐标系xOy中,点A(0,3),B(-3,0),C(3,0).(1)过点M(m,0)作垂直于x轴的直线,①当时,ABC关于直线的对称度的值是 :②若ABC关于直线的对称度为1,则m的值是 .(2)过点N(0,n)作垂直于y轴的直线,求△ABC关于直线的对称度的最大值.(3)点P(-4,0)满足,点Q的坐标为(t,0),若存在直线,使得APQ关于该直线的对称度为1,写出所有满足题意的整数t的值.3、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积 .4、平面直角坐标系中有点、,连接AB,以AB为直角边在第一象限内作等腰直角三角形,则点C的坐标是_________.5、对于平面直角坐标系中的任意一点,给出如下定义:记,,将点与称为点的一对“相伴点”.例如:点的一对“相伴点”是点与.(1)点的一对“相伴点”的坐标是______与______;(2)若点的一对“相伴点”重合,则的值为______;(3)若点的一个“相伴点”的坐标为,求点的坐标;(4)如图,直线经过点且平行于轴.若点是直线上的一个动点,点与是点的一对“相伴点”,在图中画出所有符合条件的点,组成的图形. -参考答案-一、单选题1、C【解析】【分析】首先确定角码的变化规律,利用规律确定答案即可.【详解】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0)…,∵2021÷4=505余1,∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,∴A2021的坐标为(1012,0).故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.2、D【解析】【分析】根据位置的确定需要两个条件:方向和距离进行求解即可.【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D.【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键.3、A【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.4、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.【详解】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=-3,则a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.5、C【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征解答即可.【详解】解:因为A(−3,-3)中的横坐标为负,纵坐标为负,故点P在第三象限.故选C.【点睛】本题主要考查点所在的象限问题,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).6、B【解析】【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.7、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.8、C【解析】【分析】平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.【详解】解:点A(2,3)关于x轴的对称的点B(2,﹣3),故选:C.【点睛】本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.9、A【解析】【分析】根据等腰直角三角形的性质得到OA1=,OA2=,OA3=,…,OA1033=,再利用A1、A2、A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033在x轴负半轴,即可确定点A1033的坐标.【详解】解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=,OA2=,OA3=,……,OA1033=,∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,1033=8×129+1,∴点A1033在x轴负半轴,∵OA1033=,∴点A1033的坐标为:,故选:A.【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.10、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、3【解析】【分析】画出图形,根据垂线段最短解答即可.【详解】解:如图.,在轴上.线段的长度为点到y轴上点的距离.若使得线段长度的最小,由垂线段最短,可知当A在时,即轴,线段长度最小.此时最小值为3.故答案为:3.【点睛】本题考查了坐标与图形,垂线段最短,数形结合是解答本题的关键.2、【解析】【分析】根据点是第二象限的点,可得 ,即可求解.【详解】解:∵点是第二象限的点,∴ ,解得: ,∴的取值范围是.故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.3、或【解析】【分析】借助坐标系内三角形底和高的确定,利用三角形面积公式求解.【详解】解:如图,S1=×|yP−yA|×1,S2=×2×1=1,∵S1≥S2,∴|yP-1|≥3,解得:yP≤-2或yP≥4.【点睛】本题主要考查坐标系内三角形面积的计算,关系是确定三角形的底和高.4、16【解析】【分析】过B、A点分别作y轴的垂线,过A、C点作x轴的垂线,四条垂线分别相交于D、E、F、A点,则四边形DEAF为矩形,△ABF、△DBC、△ACE为直角三角形,则,根据题中坐标即可求解.【详解】如图所示,过B、A点分别作y轴的垂线,过A、C点作x轴的垂线,四条垂线分别相交于D、E、F、A点,则四边形DEAF为矩形,△ABF、△DBC、△ACE为直角三角形,故答案为:16.【点睛】对于坐标系中不规则三角形的面积计算,我们通常将其补成矩形,再减去三个规则的直角三角形.将复杂的不规则图形面积求解转化成简单的规则图形求解.5、1【解析】【分析】先求出点A向上平移两个单位后的坐标为,x轴上点坐标的特征即可求出m的值.【详解】∵,∴将点A向上平移两个单位后的坐标为,∵在x轴上,∴,解得:.故答案为:1.【点睛】本题考查点坐标的平移以及x轴点坐标的特征,掌握点坐标平移的性质以及x轴点坐标的特征是解题的关键.三、解答题1、 (1)图见解析,A1(2,4)(2)P(0,3)(3)图见解析,【解析】【分析】(1)先作出点A、B、C关于y轴对称的点,然后连线即可;(2)连接AA1,交y轴于一点,然后根据轴对称的性质及两点之间线段最短可知此点即为所求的点P;(3)根据全等三角形的性质可直接作出图象,然后问题可求解.(1)解:如图所示:由图象可知:A1(2,4);(2)解:如(1)图示:∴由图可知P(0,3);(3)解:由全等三角形的性质可得如图所示:由图可知:符合条件的△DBC(点D与点A重合除外)点.【点睛】本题主要考查全等三角形的性质及坐标与图形,熟练掌握全等三角形的性质及坐标与图形是解题的关键.2、(1)①;②0;(2);(3)4或1【解析】【分析】(1)①作图,求出,再根据定义求值即可;②通过数形结合的思想即可得到;(2)根据求△ABC关于直线的对称度的最大值,即是求最大值即可;(3)存在直线,使得APQ关于该直线的对称度为1,即转变为APQ是等腰三角形,需要分类进行讨论,分;;,同时需要满足t的值为整数.【详解】解:(1)①当时,根据题意作图如下:,为等腰直角三角形,,,根据折叠的性质,,,关于直线的对称度的值是:,故答案是:;②如图:根据等腰三角形的性质,当时,有,ABC关于直线的对称度为1,故答案是:0;(2)过点N(0,n)作垂直于y轴的直线,要使得△ABC关于直线的对称度的最大值,则需要使得最大,如下图:当时,取到最大,根据,可得为的中位线,,,△ABC关于直线的对称度的最大值为:;(3)若存在直线,使得APQ关于该直线的对称度为1,即为等腰三角形即可,①当时,为等腰三角形,如下图:,;②当时,为等腰三角形,如下图:,;③当时,为等腰三角形,如下图:设,则,根据勾股定理:,,解得:,(不是整数,舍去),综上:满足题意的整数的值为:4或1.【点睛】本题考查了三角形的折叠,对称类新概念问题、等腰三角形的性质、勾股定理,解题的关键是读懂题干信息,搞懂对称度的概念,再结合数形结合及分类讨论的思想进行求解.3、 (1)见解析;(2)见解析;(3)4.【解析】【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.4、或##或【解析】【分析】根据题意作出图形,①当时,过点作轴于点,证明;②当时,过点作轴于点,证明,根据点的坐标即可求得的坐标.【详解】解:如图,、,以AB为直角边在第一象限内作等腰直角三角形,则,①当时,过点作轴于点,在与中②当时,过点作轴于点,同理可得,综上,点C的坐标是或故答案为:或【点睛】本题考查了坐标与图形,等腰直角三角形的性质,三角形全等的性质与判定,分类讨论是解题的关键.5、 (1),(2)-4(3)或(4)见解析【解析】【分析】(1)根据相伴点的含义可得,,从而可得答案;(2)根据相伴点的含义可得,再解方程可得答案;(3)由点的一个“相伴点”的坐标为,则另一个的坐标为 设点,再根据相伴点的含义列方程组,再解方程组即可;(4)设点,可得,,可得点的一对“相伴点”的坐标是与,再画出所在的直线即可.(1)解:,,,点的一对“相伴点”的坐标是与,故答案为:,;(2)解:点,,,点的一对“相伴点”的坐标是和,点的一对“相伴点”重合,,,故答案为:;(3)解:设点,点的一个“相伴点”的坐标为,则另一个的坐标为 或,或,或;(4)解:设点,,,点的一对“相伴点”的坐标是与,当点的一个“相伴点”的坐标是,点在直线上,当点的一个“相伴点”的坐标是,点在直线上,即点,组成的图形是两条互相垂直的直线与直线,如图所示,【点睛】本题考查的是新定义情境下的坐标与图形,平行线于坐标轴的直线的特点,二元一次方程组的应用,理解新定义再进行计算或利用新定义得到方程组与图形是解本题的关键.
相关试卷
这是一份数学第十九章 平面直角坐标系综合与测试课后作业题,共25页。试卷主要包含了在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份初中冀教版第十九章 平面直角坐标系综合与测试课时作业,共27页。试卷主要包含了若点P,如图,,且点A,下列各点中,在第二象限的点是等内容,欢迎下载使用。
这是一份数学第十九章 平面直角坐标系综合与测试随堂练习题,共25页。试卷主要包含了如图是象棋棋盘的一部分,如果用,在平面直角坐标系xOy中,点A,在下列说法中,能确定位置的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)