搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系课时练习试题(含答案解析)

    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系课时练习试题(含答案解析)第1页
    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系课时练习试题(含答案解析)第2页
    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系课时练习试题(含答案解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题

    展开

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了点在第四象限,则点在第几象限,点P关于y轴对称点的坐标是.,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图是北京地铁部分线路图.若崇文门站的坐标为,北海北站的坐标为,则复兴门站的坐标为(     A. B. C. D.2、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是(       A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)3、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是(       A.第一象限 B.第二象限 C.第三象限 D.第四象限5、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为(       A. B. C. D.6、点在第四象限,则点在第几象限(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将三角形ABC绕点P旋转90°,得到△ABC′,则点P的坐标为(  )A.(0,4) B.(1,1) C.(1,2) D.(2,1)8、点P(﹣1,2)关于y轴对称点的坐标是(  ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)9、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是(  )A.相 B.马 C.炮 D.兵10、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么AB两点的距离等于______.2、若点与点关于x轴对称,则mn=______.3、已知点A(m-1,3)与点B(2,n+1)关于y轴对称,则mn=_______.4、如图,△ABC的顶点AB分别在x轴,y轴上,∠ABC90°,OAOB1BC2,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _____5、如果点A的坐标为(2,﹣1),点B的坐标为(5,3),那么AB两点的距离等于 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点,点A关于x轴的对称点记作点B,将点B向右平移2个单位得点C(1)分别写出点的坐标:B(____)、C(____);(2)点Dx轴的正半轴上,点E在直线上,如果是以为腰的等腰直角三角形,那么点E的坐标是_____.2、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:      (2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1(3)画出ABC绕原点O逆时针旋转90°后得到的A2B2C23、如图,在平面直角坐标系中,点O为坐标原点,点中的横坐标x与纵坐标y满足,过点Ax轴的垂线,垂足为点D,点Ex轴的负半轴上,且满足,线段AEy轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DFFGDG,若点G的纵坐标为m,三角形DFG的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当时,动点PD出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点QA出发,以每秒2个单位的速度沿着折线向终点C运动,PQ两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标.4、如图,在正方形网格中,每个小正方形的边长为1个单位长度,三点在格点上(网格线的交点叫做格点),现将先向上平移4个单位长度,再关于轴对称得到(1)在图中画出,点的坐标是______;(2)连接,线段的长度为______;(3)若内部一点,经过上述变换后,则内对应点的坐标为______.5、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为(2)点C的坐标为,连接,则的面积为_________.(3)在图中画出关于y轴对称的图形(4)在x轴上找到一点P,使最小,则的最小值是_________. -参考答案-一、单选题1、B【解析】【分析】根据已知点坐标确定直角坐标系,即可得到答案.【详解】由题意可建立如图所示平面直角坐标系,则复兴门站的坐标为故选:【点睛】此题考查了平面直角坐标系中点坐标特点,由点坐标确定直角坐标系,由坐标系得到点坐标,属于基础题型.2、A【解析】【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.3、C【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.【详解】解:∵点关于轴对称的点是∴点关于轴对称的点在第三象限.故选:C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.4、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.5、B【解析】【分析】根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.【详解】解:∵用表示5排7座∴坐标的第一个数表示排,第二个数表示座∴小嘉坐在7排8座可表示出(7,8).故选B.【点睛】本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.6、C【解析】【分析】根据点Axy)在第四象限,判断xy的范围,即可求出B点所在象限.【详解】∵点Axy)在第四象限,x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣xy﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、C【解析】【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P【详解】解:选两组对应点,连接后作其中垂线,两中垂线的交点即为点P,由图知,旋转中心P的坐标为(1,2)故选:C【点睛】本题主要考查坐标与图形的变化﹣旋转,解题的关键是掌握旋转变换的性质.8、A【解析】【分析】平面直角坐标系中任意一点Pxy),关于y轴的对称点的坐标是(-xy),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.9、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.10、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.二、填空题1、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,故答案为:【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,斜边长为,那么2、3【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点Pxy)关于x轴的对称点P′的坐标是(x,-y),进而得出mn的值,再代入所求式子计算即可.【详解】∵点与点关于x轴对称mn=3故答案为:3.【点睛】此题主要考查了关于x轴对称点的坐标性质,正确记忆关于坐标轴对称的坐标性质是解题关键.3、1【解析】【分析】根据关于y轴对称的点,纵坐标不变,横坐标互为相反数,列出方程求解即可.【详解】解:∵点A(m-1,3)与点B(2,n+1)关于y轴对称,m-1=-2,n+1=3,解得,m=-1,n=2,mn=-1+2=1,故答案为:1.【点睛】本题考查了关于y轴对称点的坐标变化,解题关键是明确关于y轴对称的点,纵坐标不变,横坐标互为相反数.4、【解析】【分析】过点C 轴于点D,根据 OAOB1,∠AOB=90°,可得ABO=45°,从而得到CBD=45°,进而得到BD=CD=2,,可得到点,再由将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点 由此发现,ABC绕点O顺时针旋转四次一个循环,即可求解.【详解】解:如图,过点C 轴于点DOAOB1,∠AOB=90°,∴∠ABO=45°,ABC90°,∴∠CBD=45°,∴∠BCD=45°,BD=CDBC2BD=CD=2OD=OB+BD=3∴点将△ABC绕点O顺时针旋转,第一次旋转90°后,点将△ABC绕点O顺时针旋转,第二次旋转90°后,点将△ABC绕点O顺时针旋转,第三次旋转90°后,点将△ABC绕点O顺时针旋转,第四次旋转90°后,点 由此发现,ABC绕点O顺时针旋转四次一个循环,∴第2021次旋转结束时,点C的坐标为故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.5、5【解析】【分析】利用两点之间的距离公式即可得.【详解】解:两点的距离等于5,故答案为:5.【点睛】本题考查了两点之间的距离公式,熟记两点之间的距离公式是解题关键.三、解答题1、 (1)(2)【解析】【分析】(1)根据点的平移、对称规律求解即可;(2)作轴于F,得到,求出进而得到(1)解:将点关于x轴的对称点B的坐标为将点B向右平移2个单位得点C故答案为:(2)轴于F,如下图所示:由题意可知,点的坐标为故答案为【点睛】此题主要考查了关于x轴对称点的性质以及平移的性质,正确掌握点的坐标特点是解题关键.2、1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);2)如图所示,△A1B1C1即为所求.3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.3、 (1)A(2,8),E(-6,0);(2)S=m+24;(3)点P坐标为(2,)或(2,)或(2,【解析】【分析】(1)根据求出xy,得到A的坐标,根据,求出OE得到E的坐标;(2)由DE=6=AD,求出OF=OE=6,根据平移的性质得到CD=8,G(10,m),延长BAy轴于H,则BHy轴,则OH=AD=8,求出HF=2,根据三角形DFG的面积为S=代入数值求出答案;(3)由求得 G(10,2),设运动时间为t秒,分两种情况:当时,当时,利用面积加减关系求出△FGP与△AGQ的面积,得方程求解即可.(1)解:∵x-2=0,y-8=0,x=2,y=8,A(2,8),AD=8,OD=2,OE=8-2=6,E(-6,0);(2)解:∵OD=2,OE=6,DE=6=ADADx轴,∴∠AED=∠EAD=45°,∵∠EOF=90°,∴∠EFO=45°=∠OEFOF=OE=6,∵将线段AD向右平移8个单位长度,得到线段BCB(10,8),C(10,0),BCx轴,x轴,CD=8,G(10,m),延长BAy轴于H,则BHy轴,则OH=AD=8, HF=2,三角形DFG的面积为S===m+24; (3)解:当时,m+24=26,m=2,∴G(10,2),设运动时间为t秒,时,∵三角形FGP的面积是三角形AGQ面积的2倍,t=P(2,);时,t=t=P(2,)或P(2,),综上,点P坐标为(2,)或(2,)或(2,).【点睛】此题考查了算术平方根的非负性,绝对值的非负性,线段平移的性质,三角形面积的计算公式,图形中动点问题,解题中注意运用分类思想解决问题是关键,避免漏解的现象.4、(1)画图见解析,;(2);(3)【解析】【分析】(1)分别确定平移与轴对称后的对应点 再顺次连接 再根据的位置可得其坐标;(2)利用勾股定理求解的长度即可;(3)根据平移的性质与轴对称的性质依次写出每次变换后的坐标即可.【详解】解:(1)如图,是所求作的三角形,其中 (2)由勾股定理可得: 故答案为: (3)由平移的性质可得:向上平移4个单位长度后的坐标为: 再把点沿轴对折可得: 故答案为:【点睛】本题考查的是画平移与轴对称后的图形,平移的性质,轴对称的性质,坐标与图形,二次根式的化简,掌握“平移与轴对称的作图及平移与轴对称变换的坐标变化规律”是解本题的关键.5、 (1)见解析(2)(3)见解析(4)【解析】【分析】(1)根据AB两点坐标确定平面直角坐标系即可;(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(3)根据轴对称的性质找到对应点,顺次连接即可;(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.【小题1】解:如图,平面直角坐标系如图所示;【小题2】如图,ABC即为所求,SABC==【小题3】如图,A1B1C1即为所求;【小题4】如图,点P即为所求,AP+BP=AP+PB= AB==【点睛】本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型. 

    相关试卷

    冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共29页。试卷主要包含了已知点P的坐标为,如图是象棋棋盘的一部分,如果用,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点A等内容,欢迎下载使用。

    初中冀教版第十九章 平面直角坐标系综合与测试课时作业:

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试课时作业,共22页。试卷主要包含了在平面直角坐标系中,点P,如图,树叶盖住的点的坐标可能是等内容,欢迎下载使用。

    数学八年级下册第十九章 平面直角坐标系综合与测试练习:

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试练习,共30页。试卷主要包含了若点P等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map