初中数学第十九章 平面直角坐标系综合与测试同步测试题
展开
这是一份初中数学第十九章 平面直角坐标系综合与测试同步测试题,共25页。试卷主要包含了若点在轴上,则点的坐标为,在平面直角坐标系中,A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A.陇海路以北 B.工人路以西C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角2、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)3、如图,,且点A、B的坐标分别为,则长是( )A. B.5 C.4 D.34、如图,在平面直角坐标系中,已知点、,对连续作旋转变换依次得到三角形(1),(2),(3),(4),,则第2020个三角形的直角顶点的坐标是( )A. B. C. D.5、若点在轴上,则点的坐标为( )A. B. C. D.6、在平面直角坐标系中,A(2,3),O为原点,若点B为坐标轴上一点,且△AOB为等腰三角形,则这样的B点有( )A.6个 B.7个 C.8个 D.9个7、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)8、如果点在第四象限内,则m的取值范围( )A. B. C. D.9、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A. B. C. D.10、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )A.(2,) B.(,) C.(2,3) D.(3,)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、教室里,从前面数第8行第3位的学生位置记作,则坐在第3行第8位的学生位置可表示为____________.2、在平面直角坐标系中,若点到轴的距离是3,则的值是 __.3、在平面直角坐标系中,一个长方形ABCD三个顶点的坐标分别为A(1,2),B(1,﹣4),D(﹣3,2),则点C坐标为 _____.4、用坐标表示地理位置的步骤:(1)建立坐标系,选择一个______参照点为原点,确定______和______.参照点不同,地理位置的坐标也不同.(2)根据具体问题确定适当的______,并在坐标轴上标出______.(3)在坐标平面内画出这些点,并写出各点的______和各个地点的名称.5、已知点是第二象限的点,则的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格中,每个小正方形的边长为1个单位长度,、、三点在格点上(网格线的交点叫做格点),现将先向上平移4个单位长度,再关于轴对称得到.(1)在图中画出,点的坐标是______;(2)连接,线段的长度为______;(3)若是内部一点,经过上述变换后,则内对应点的坐标为______.2、在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同距点.图中的P,Q两点即为同距点.(1)已知点A的坐标为(﹣3,1),①在点E(0,4),F(5,﹣1),G(2,2)中,为点A的同距点的是 ;②若点B在x轴上,且A,B两点为同距点,则点B的坐标为 ;③若点C(m﹣1,﹣1)为点A的同距点,求m的值;(2)已知点S(﹣3,0),点T(﹣2,0).①若在线段ST上存在点D(n,﹣n﹣1)的同距点,求n的取值范围;②若点K为点T的同距点,直接写出线段OK长度的最小值.3、如图,在平面直角坐标系xOy中,经过点M(0,m),且平行于x轴的直线记作直线y=m.我们给出如下定义:点P(x,y)先关于x轴对称得到点P1,再将点P1关于直线y=m对称得到点P',则称点P'称为点P关于x轴和直线y=m的二次反射点.(1)点A(5,3)关于x轴和直线y=1的二次反射点A'的坐标是 ;(2)点B(2,﹣1)关于x轴和直线y=m的二次反射点B'的坐标是(2,﹣5),m= ;(3)若点C的坐标是(0,m),其中m>0,点C关于x轴和直线y=m的二次反射点是C',求线段CC'的长(用含m的式子表示);(4)如图,正方形的四个顶点坐标分别为(0,0)、(2,0)、(2,2)、(0,2),若点P(1,4),Q(1,5)关于x轴和直线y=m的二次反射点分别为P',Q',且线段P'Q'与正方形的边没有公共点,直接写出m的取值范围.4、如图,点A为x轴负半轴上一点,点B为y轴正半轴上一点,,,且a、b满足有意义.(1)若,求AB的长;(2)如图1,点C与点A关于y轴对称,点P在x轴上(点P在点A左边),以PB为直角边在PB的上方作等腰直角△PDB,试猜想AD与PC的关系并证明;(3)如图2,点M为AB中点,点E为射线OA上一点,点F为射线BO上一点,且,设,,请求出EF的长度(用含m、n的代数式表示).5、已知二元一次方程,通过列举将方程的解写成下列表格的形式,x-3-1ny6m-2如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.(1)①表格中的______,______;②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值. -参考答案-一、单选题1、D【解析】【分析】根据位置的确定需要两个条件:方向和距离进行求解即可.【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D.【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键.2、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.3、D【解析】【分析】利用全等三角形的性质证明即可.【详解】解:∵A(-1,0),B(0,2),∴OA=1,OB=2,∵△AOB≌△CDA,∴OB=AD=2,∴OD=AD+AO=2+1=3,故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.4、C【解析】【分析】利用勾股定理列式求出的长,再根据图形写出第(3)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2020除以3,根据商和余数的情况确定出第个三角形的直角顶点到原点的距离,然后写出坐标即可.【详解】解:点,,三角形(3)的直角顶点坐标为:第2020个三角形是第674组的第一个直角三角形,其直角顶点与第673组的最后一个直角三角形顶点重合第2020个三角形的直角顶点的坐标是.故选:C.【点睛】本题考查了坐标与图形变化旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组,依次循环是解题的关键.5、B【解析】【分析】根据y轴上的点的坐标特点可得a+2=0,再解即可.【详解】解:由题意得:a+2=0,解得:a=-2,则点P的坐标是(0,-2),故选:B.【点睛】此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.6、C【解析】【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点B,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点B,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点B有8个,故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7、A【解析】【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.8、A【解析】【分析】根据第四象限点的横坐标为正,纵坐标为负,列不等式即可求解.【详解】解:∵点在第四象限内,∴,解得,;故选:A.【点睛】本题考查了不同象限内点的坐标的特征,解题关键是明确第四象限点的横坐标为正,纵坐标为负.9、C【解析】【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.10、C【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,据此求解即可得.【详解】解:点关于x轴的对称点的坐标为:.故选:C.【点睛】此题主要考查了关于x轴对称点的特点,熟练掌握坐标变换是解题关键.二、填空题1、【解析】【分析】根据已知点的坐标表示方法即可求即.【详解】解:∵从前面数第8行第3位的学生位置记作,∴坐在第3行第8位的学生位置可表示为(3,8).故答案为(3,8).【点睛】本题考查点的坐标表示位置,掌握点坐标表示方法是解题关键.2、【解析】【分析】根据纵坐标的绝对值就是点到x轴的距离即可求得的值.【详解】因为点到轴的距离是3,所以,解得.故答案为:.【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.3、(﹣3,﹣4)【解析】【分析】根据长方形的性质求出点C的横坐标与纵坐标,即可得解.【详解】如图,∵A(1,2),B(1,﹣4),D(﹣3,2),∴点C的横坐标与点D的横坐标相同,为﹣3,点C的纵坐标与点B的纵坐标相同,为﹣4,∴点D的坐标为(﹣3,﹣4).故答案为:(﹣3,﹣4).【点睛】本题考查了坐标与图形性质,主要利用了矩形的对边平行且相等的性质,作出图形更形象直观.4、 适当的 x轴,y轴 正方向 比例尺 单位长度 坐标【解析】略5、【解析】【分析】根据点是第二象限的点,可得 ,即可求解.【详解】解:∵点是第二象限的点,∴ ,解得: ,∴的取值范围是.故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.三、解答题1、(1)画图见解析,;(2);(3)【解析】【分析】(1)分别确定平移与轴对称后的对应点 再顺次连接 再根据的位置可得其坐标;(2)利用勾股定理求解的长度即可;(3)根据平移的性质与轴对称的性质依次写出每次变换后的坐标即可.【详解】解:(1)如图,是所求作的三角形,其中 (2)由勾股定理可得: 故答案为: (3)由平移的性质可得:向上平移4个单位长度后的坐标为: 再把点沿轴对折可得: 故答案为:【点睛】本题考查的是画平移与轴对称后的图形,平移的性质,轴对称的性质,坐标与图形,二次根式的化简,掌握“平移与轴对称的作图及平移与轴对称变换的坐标变化规律”是解本题的关键.2、 (1)①E,G;②(﹣4,0)或(4,0);③4或﹣2(2)①≤n≤1或﹣2≤n≤;②【解析】【分析】(1)①把各点的横纵坐标的绝对值相加得4,则是A的同距点;②因为点B在x轴上,所以设B(x,0),则|x|=4,可得结论;③根据同距点的定义得出关于m的方程,即可求解;(2)①根据已知,列出n的不等式,即可得到答案;②设K(x,y),求出x2+y2的最小值,即可得到OK的最小值.(1)解:①∵点A的坐标为(﹣3,1),∴A到两坐标轴的距离之和等于4,∵点E(0,4)两坐标轴的距离之和等于4,F(5,﹣1)两坐标轴的距离之和等于6,G(2,2)两坐标轴的距离之和等于4,∴点A的同距点的是E,G;②点B在x轴上,设B(x,0),则|x|=4,∴x=±4,∴B(﹣4,0)或(4,0);③若点C(m﹣1,﹣1)为点A的同距点,则|m﹣1|+1=4,解得:m=4或﹣2.(2)解:①∵点S(﹣3,0),点T(﹣2,0),∴线段ST上的点到x轴、y轴距离的和大于等于2且小于等于3,而在线段ST上存在点D(n,﹣n﹣1)的同距点,∴2≤|n|+|﹣n﹣1|≤3,解得:≤n≤1或﹣2≤n≤,②设K(x,y),则OK=,当x2+y2最小时,OK最小,∵点K为点T的同距点,∴|x|+|y|=2,∴x2+y2+2|xy|=4,∴2|xy|=4﹣(x2+y2)①,∵(|x|﹣|y|)2≥0,∴x2+y2﹣2|xy|≥0,即2|xy|≤x2+y2②,由①②可得4-(x2+y2)≤x2+y2,∴x2+y2≥2,而OK=≥0,∴OK最小值为.【点睛】本题借助平面直角坐标系中点的坐标特点考查新定义“同距点”,解题的关键是理解“同距点”的含义,灵活运用所学知识列方程、不等式解决问题.3、 (1)(5,5)(2)-2(3)(4)或或【解析】【分析】(1)根据二次反射点的定义直接得出答案;(2)根据二次反射点的定义得出,则,由此可得的值;(3)根据二次反射点的定义得出,则可得出答案;(4)根据二次反射点的定义得出,,由题意分两种情况列出不等式组,解不等式组可得出答案.【小题1】解:点,点关于轴对称得到点,点关于直线对称得到点.故答案为:.【小题2】点,点关于轴对称得到点,点关于直线对称得到点,,解得,故答案为:.【小题3】点的坐标是,点关于轴对称得到点,点关于直线对称得到点,即,.【小题4】由题意可知,点,关于轴和直线的二次反射点分别为,,且轴,,线段与正方形的边没有公共点,有三种情况:①,解得;②,解得;③,解得.综上,若线段与正方形的边没有公共点,则的取值范围或或.【点睛】本题考查了平面直角坐标系中坐标与图形变化,考查了正方形的性质,轴对称性质,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.4、 (1)(2)AD=PC,证明见解析;(3)【解析】【分析】(1) 根据二次根式的非负性可求得,再结合勾股定理可求得AB的值;(2)连接BC,只需要证明△PBC≌△DBA,即可证明AD=PC;(3)分情况讨论,当时,过点M作MN⊥x轴,作MG⊥y轴,可证明△MEN≌△MFG,从而可得ME=MF,EN=GF,可借助m、n的代数式EN和MN,从而表示ME,继而可得EF,画图可知,其它两种情况同理可得.(1)解:∵a、b满足有意义,∴且,∴,即,,.(2)解:AD=PC,证明如下:连接BC,由(1)可得OA=OB=OC,∵两个坐标轴垂直,∴∠OAB=∠ABO=∠OBC=∠OCB=45°,∴AB=BC,∠ABC=90°,又∵△PDB为等腰直角三角形,∴BP=BD,∠DBP=90°,∴∠ABD=∠DBP+∠ABP=∠ABC+∠ABP=∠BPC,在△PBC和△DBA中 ∴△PBC≌△DBA(SAS)∴AD=PC.(3)当时, 过点M作MN⊥x轴,作MG⊥y轴,∴∠ANM=∠MGB=90°,由(2)可知∠OAB=∠ABO=45°,∴∠AMN=∠BMG=90°,∴AN=MN,MG=BG,∠NMG=90°,∵M为AB的中点∴AM=BM,∴△ANM≌△MGB(SSS),∴AN=MN=MG=BG,∵∠EMF=90°,∴∠EMN=90°-∠NMF=∠GMF,在△MEN和△MFG中∵ ∴△MEN≌△MFG(SAS),∴EM=MF,EN=GF,∵,,∴,∴, ,在Rt△EMN中,根据勾股定理,在Rt△EMF中,根据勾股定理,当或时同理可证.故.【点睛】本题考查勾股定理,全等三角形的性质和判定,坐标与图形,二次根式的非负性等.(1)中能根据二次根式的非负性得出a=b=c是解题关键;(2)中正确构造辅助线,作出全等三角形是解题关键;(3)能借助全等三角形和线段的和差正确表示线段的长度是解题关键.5、 (1)①4,5;②图见解析(2)【解析】【分析】(1)①将代入方程可得的值,将代入方程可得的值;②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;(2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.(1)解:①将代入方程得:,解得,即,将代入方程得:,解得,即,故答案为:4,5;②由题意,三个解的对应点的坐标分别为,,,在所给的平面直角坐标系中画出如图所示:(2)解:由题意,将代入得:,整理得:,解得.【点睛】本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.
相关试卷
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共24页。试卷主要包含了点关于轴的对称点是,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试达标测试,共29页。试卷主要包含了如图是象棋棋盘的一部分,如果用,点A关于轴的对称点的坐标是等内容,欢迎下载使用。