初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题
展开冀教版八年级数学下册第二十章函数课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、今年暑假期间,小东外出爬山.他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.下列说法错误的是( )
A.小明中途休息用了20分钟
B.小明休息前爬山的平均速度为每分钟 70米
C.小明在上述过程中所走的路程为3800米
D.小明休息前爬山的平均速度小于休息后爬山的平均速度
2、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700
C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米
3、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4、如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是( )
A. B.
C. D.
5、甲、乙两人沿同一条路从A地出发,去往100千米外的B地,甲、乙两人离A地的距离(千米)与时间t(小时)之间的关系如图所示,以下说法正确的是( )
A.甲的速度是40km/h
B.乙的速度是30km/h
C.甲出发小时后两人第一次相遇
D.甲乙同时到达B地
6、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )
A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)
C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)
7、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
8、函数中,自变量x的取值范围是( )
A. B. C. D.
9、小明同学利用周末从家里出发骑自行车到某小区参加志愿服务活动、活动结束后原路返回家中,他离家的距离y(千米)与时间x(小时)之间的函数图象如图中折线所示,若,小明返回时骑行的平均速度是前往某小区时的平均速度的,根据图中数据,下列结论中,正确的结论的是( )
①某小区离小明家12千米;②小明前往某小区时,中途休息了0.25小时;
③小明前往某小区时的平均速度是16千米/小时;
④小明在某小区志愿服务的时间为1小时;⑤a的值为.
A.2个 B.3个 C.4个 D.5个
10、下列各图表示y是x的函数的图象是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式2m2﹣2m+2019的值为_____.
2、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=___________________,△APE的面积等于6.
3、如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,加油过程中的常量是________.
4、在函数中,自变量的取值范围是___________.
5、若球体体积为,半径为,则.其中变量是_______、_______,常量是________.
三、解答题(5小题,每小题10分,共计50分)
1、有这样一个问题:探究函数y=的图象与性质.小东根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)列表:
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣0.5 | 0 | 0.2 | 1.8 | 2 | 2.5 | 3 | 4 | n | 6 | 7 | … |
y | … | ﹣1 | m | ﹣1.5 | ﹣2 | ﹣3 | ﹣4 | ﹣6 | ﹣7.5 | 7.5 | 6 | 4 | 3 | 2 | 1.5 | 1.2 | 1 | … |
求出表中m的值为 ,n的值为 .
描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;
(3)观察发现:结合函数的图象,写出该函数的两条性质:① ;② .
2、在国内投寄平信应付邮资如表:
信件质量x(克) | 0<x≤20 | 20<x≤40 | 40<x≤60 |
邮资y(元/封) | 1.20 | 2.40 | 3.60 |
(1)根据函数的定义,y是关于x的函数吗?
(2)结合表格解答:
①求出当x=48时的函数值,并说明实际意义.
②当寄一封信件的邮资是2.40元时,信件的质量大约是多少克?
3、甲、乙两商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原价收费,其余每件优惠20%;乙商场的优惠条件是:每件优惠25%.设所买商品为x(x>1)件,甲商场收费为元,乙商场收费为y2元.
(1)分别求出y1,y2与x之间的关系式;
(2)当所买商品为5件时,选择哪家商场更优惠?请说明理由.
4、下列式子中的y是x的函数吗?为什么?
(1); (2); (3).
请再举出一些函数的例子.
5、小明某天上午时骑自行车离开家,时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).
(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)时和时,他分别离家多远?
(3)他到达离家最远的地方是什么时间?离家多远?
(4)时到时他行驶了多少千米?
(5)他可能在哪段时间内休息,并吃午餐?
(6)他由离家最远的地方返回时的平均速度是多少?
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.
【详解】
解:A、小明中途休息用了60−40=20分钟,正确,不符合题意;
B、小明休息前爬山的速度为2800÷40=70(米/分钟),正确,不符合题意;
C、小明在上述过程中所走的路程为3800米,正确,不符合题意;
D、小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,错误,符合题意;
故选:D.
【点睛】
本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.
2、D
【解析】
【分析】
两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
【详解】
解:∵3600÷20=180米/分,
∴两人同行过程中的速度为180米/分,故A选项不符合题意;
∵东东在爸爸返回5分钟后返回即第20分钟返回
∴m=20-5=15,
∴n=180×15=2700,故B选项不符合题意;
∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
∴运动18分钟时两人相距3240-2430=810米;
∵返程过程中东东45-20=25分钟走了3600米,
∴东东返程速度=3600÷25=144米/分,
∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
∴运动31分钟两人相距756米,故D选项符合题意;
故选D.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
3、B
【解析】
【分析】
由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
【详解】
解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
乙车行驶280千米需要的时间为:小时,
所以甲车返回的速度为:千米/时,故②符合题意;
由小时,所以 故③符合题意,
当乙车行驶2小时时,行驶的路程为:千米,
此时甲车行驶1小时,千米,
所以两车相距:千米,
当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
距离A地千米,所以两车相距千米,故④不符合题意;
综上:故选B
【点睛】
本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
4、B
【解析】
【分析】
根据动点P的正方形各边上的运动状态分类讨论△APD的面积即可;
【详解】
由点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0;
当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8;
当8≤x≤12时,点P在CB上运动,△APD的面积y=8;
当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32;
故选B.
【点睛】
本题主要考查了正方形的性质,动点问题与函数图象结合,准确分析计算是解题的关键.
5、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由图可得, 甲车出发第小时时距离A地千米,甲车出发第小时时距离A地千米,甲车的速度是千米/小时,故选项A符合题意;
乙车出发小时时距离A地千米,乙车速度是千米/小时,故选项B不合题意;
甲车第小时到达地,甲车的速度是千米/小时,则甲车到达地用时小时,则甲车在第小时出发,由图像可得甲,乙两车在第小时相遇,则甲车出发小时两车相遇,故选项正确;
甲车行驶千米时,乙车行驶了千米,甲车先到B地,故选项D不合题意;
故选:
【点睛】
本题主要考查了函数图象信息分析,解答本题的关键是明确题意,利用数形结合的思想解答.
6、B
【解析】
【分析】
根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.
【详解】
一个等腰三角形的腰长为x,底边长为y,周长是10,
即
即
解得
即
解得
底边y关于腰长x之间的函数关系式为
故选B
【点睛】
本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.
7、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
8、B
【解析】
【分析】
根据分母不为零,函数有意义,可得答案.
【详解】
解:函数有意义,得
,
解得,
故选:B.
【点睛】
本题考查了函数自变量的取值范围,解题的关键是掌握分母不为零.
9、C
【解析】
【分析】
由的纵坐标为12,可判断①,由可判断②,由总路程除以总时间可判断③,由可判断④,由返程时的速度为:千米/小时,可得返程用的时间为:小时,可判断⑤,从而可得答案.
【详解】
解:由的纵坐标为12,可得某小区离小明家12千米;故①符合题意;
,则小明前往某小区时,中途休息了0.25小时,故②符合题意;
由小明前小时的平均速度为:千米/小时,
所以小明后段的速度与前段的速度相等,
所以后段的时间为:小时,
小明前往某小区时的平均速度为: 千米/小时,故③不符合题意;
所以小明在某小区志愿服务的时间为1小时,故④符合题意;
返程时的速度为:千米/小时,
返程用的时间为:小时,
小时,故⑤符合题意;
综上:符合题意的有:①②④⑤,
故选C
【点睛】
本题考查的是从函数图象中获取信息,理解图象上点的坐标含义是解本题的关键.
10、D
【解析】
【详解】
解:A、不是的函数的图象,此项不符题意;
B、不是的函数的图象,此项不符题意;
C、不是的函数的图象,此项不符题意;
D、是的函数的图象,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)是解题关键.
二、填空题
1、2025
【解析】
【分析】
首先把(m,0)代入y=x2-x-3可得m2-m=3,进而可得2m2﹣2m+2019的值.
【详解】
解:∵抛物线y=x2﹣x﹣3,与x轴的一个交点为(m,0),
∴m2-m-3=0,
随意m2-m=3,
2m2﹣2m+2019=2(m2﹣m)+2019=6+2019=2025.
故答案为2025.
【点睛】
本题考查了二次函数图象上点的坐标特征,根据点在抛物线上得出m2-m-3=0是解题的关键.
2、1.5或5或9
【解析】
【分析】
分为两种情况讨论:当点P在AC上时:当点P在BC上时,根据三角形的面积公式建立方程求出其解即可.
【详解】
如图1,当点P在AC上.
∵中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,
∴CE=4,AP=2t.
∵的面积等于6,
∴=AP•CE=AP×4=6.
∵AP=3,
∴t=1.5.
如图2,当点P在BC上.则t>3
∵E是DC的中点,
∴BE=CE=4.
∴=EP•AC=EP×6=6,
∴PE=2,
∴t=5或t=9.
总上所述,当t=1.5或5或9时,的面积会等于6.
故答案为:1.5或5或9.
【点睛】
本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.
3、单价
【解析】
【分析】
常量是指在变化过程中,数值始终不变的量
【详解】
解:加油过程中,单价×数量=总价,此时,单价是常量,数量和金额是变量.
故答案为:单价
【点睛】
本题考查常量的定义,牢记相关的知识点是解题关键.
4、
【解析】
【分析】
根据算术平方根的非负性即可完成.
【详解】
解:由题意得,,
解得,,
故答案为:.
【点睛】
本题考查了求函数自变量的取值范围,关键是掌握算术平方根的非负性.
5、
【解析】
【分析】
根据函数常量与变量的知识点作答.
【详解】
∵函数关系式为,
∴是自变量,是因变量,是常量.
故答案为:,,.
【点睛】
本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.
三、解答题
1、(1)x≠1;(2)2,5,图象见解析;(3)①图象是中心对称图形,对称中心的坐标是(1,0);②当x>1时,y随x的增大而减小(答案不唯一).
【解析】
【分析】
(1)根据分母不为0即可得出关于x的不等式,解之即可求解;
(2)将x=4代入函数解析式即可求出m的值,将y=1.5代入函数解析式即可求出n的值;然后用平滑曲线连线即可画出函数图象;
(3)观察函数图象,从增减性及对称性得出结论即可.
【详解】
(1)由题意得:x-1≠0,
解得:x≠1,
故答案为:x≠1;
(2)当x=4时,m=,
当y=1.5时,则1.5=,解得n=5,
描点、连线画出函数图象如图,
故答案为:2,5;
(3)观察函数图象发现:
①该图象是中心对称图形,对称中心的坐标是(1,0),
②当x>1时,y随x的增大而减小.
答案不唯一.
【点睛】
本题考查了反比例函数图象上点的坐标特征,函数自变量取值范围及反比例函数的性质,解题关键是理解题意,学会利用图象法解决问题.
2、(1)y是x的函数;(2)①3.60,实际意义见解析;②大于20克,且不超过40克
【解析】
【分析】
(1)根据函数的定义判断即可.
(2)①②利用表格求出对应的函数值即可.
【详解】
解:(1)y是x的函数,
理由是:对于x的一个值,函数y有唯一的值和它对应;
(2)①当x=48时,y=3.60,
实际意义:信件质量为48克时,邮资为3.60元;
②邮资为2.40元,信件质量大约为大于20克,且不超过40克.
【点睛】
本题考查了函数的概念,解题的关键是理解题意,灵活运用所学知识解决问题.
3、(1),;(2)当所买商品为5件时,选择乙商场更优惠,理由见解析
【解析】
【分析】
(1)根据两家商场的优惠方案分别求出对应的关系式即可;
(2)根据关系式分别求出x=5时的两个商场的收费,即可得解.
【详解】
解:(1)由题意得:,
;
(2)当时,,,
∴,
∴当所买商品为5件时,选择乙商场更优惠.
【点睛】
本题考查了列函数关系式和代数式求值,读懂题目信息,理解两家商场的优惠方案是解题的关键.
4、(1)是;(2)是;(3)是,例子不唯一
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可逐一判断.
【详解】
解:(1)满足对于x的每一个取值,y都有唯一确定的值与之对应关系,y是x的函数;
(2)满足对于x的每一个取值,y都有唯一确定的值与之对应关系,y是x的函数;
(3)满足对于x的每一个取值,y都有唯一确定的值与之对应关系,y是x的函数;
例如:、y=等对于x的每一个确定的值,y有唯一的对应值,即y是x的函数.
【点睛】
本题主要考查函数的概念,属于基础题型.
5、(1)时间、离家的距离,自变量是时间,因变量是离家的距离;(2)15千米、30千米;(3)12:00,30千米;(4)15千米,(5)12:00-13:00;(6)15千米/小时.
【解析】
【分析】
(1)根据图象的x轴和y轴即可确定表示了哪两个变量的关系;
(2)由函数图像可以看出10时的时候他离家的距离是15千米,12时的时候他离家30千米;
(3)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;
(4)根据图象首先找到时间为10时和12时离家的距离,然后作差即可;
(5)如果休息,那么距离没有增加,由此就可以确定在哪段时间内休息,并吃午餐;
(6)根据返回时所走路程和使用时间即可求出返回时的平均速度.
【详解】
解:(1)图像表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;
(2)由函数图像可以看出10时的时候他离家的距离是15千米,13时的时候他离家30千米;
(3)由图象看出他到达离家最远的地方是在12-13时,离家30千米;
(4)由图象看出10时到12时他行驶了30-15=15千米;
(5)由图象看出12:00~13:00时距离没变且时间较长,得他可能在12时到13时间内休息,并吃午餐;
(6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).
【点睛】
此题考查了函数的图象,解题关键在于看懂图中数据表示的实际意义.
初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题,共22页。试卷主要包含了在函数中,自变量x的取值范围是,当时,函数的值是,如图,点A的坐标为等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试练习: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共18页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
2021学年第二十章 函数综合与测试同步测试题: 这是一份2021学年第二十章 函数综合与测试同步测试题,共28页。试卷主要包含了如图所示的图象等内容,欢迎下载使用。