初中数学冀教版八年级下册第二十章 函数综合与测试一课一练
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试一课一练,共25页。试卷主要包含了如图所示的图象等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).A.线段EF B.线段DE C.线段CE D.线段BE2、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )A.100 m/min,266m/min B.62.5m/min,500m/minC.62.5m/min,437.5m/min D.100m/min,500m/min3、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是( )A.1 B.2 C.3 D.44、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )A.该游泳池内开始注水时已经蓄水100m3B.每小时可注水190m3C.注水2小时,游泳池的蓄水量为380m3D.注水2小时,还需注水100m3,可将游泳池注满5、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中正确的是( )①两人前行过程中的速度为200米/分;②m的值是15,n的值是3000;③东东开始返回时与爸爸相距1500米;④运动18分钟或30分钟时,两人相距900米.A.①② B.①②③ C.①②④ D.①②③④6、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.…………小明根据他的发现写出了以下三个命题:①当时,函数图象关于直线对称;②时,函数有最小值,最小值为;③时,函数的值随点的增大而减小.其中正确的是( )A.①② B.①③ C.②③ D.①②③7、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是( )v(m/s)25155﹣5t(s)0123A.v=25t B.v=﹣10t+25 C.v=t2+25 D.v=5t+108、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米9、如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在第4小时到6小时的速度是25千米/时;④汽车出发后9小时返回原地.其中正确的说法共有( )A.1个 B.2个 C.3个 D.4个10、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )A.y=n(+0.6) B.y=n()+0.6C.y=n(+0.6) D.y=n()+0.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图1,在△ABC中,AB>AC,D是边BC上的动点.设B,D两点之间的距离为x,A,D两点之间的距离为y, 表示 y与x的函数关系的图象如图2所示.线段AC的长为_________________,线段AB的长为____________.2、已知函数y=,那么自变量x的取值范围是_________.3、用函数观点解决实际问题:(1)搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;(2)分清______和______,并注意自变量的______.4、下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系:d5080100150b25405075写出用d表示b的关系式:_______.5、函数y=中,自变量x的取值范围是____________三、解答题(5小题,每小题10分,共计50分)1、下表是小华做观察水的沸腾实验时所记录的数据:时间(分)0123456789101112温度(℃)6065707580859095100100100100100(1)时间是8分钟时,水的温度为_____;(2)此表反映了变量_____和_____之间的关系,其中_____是自变量,_____是因变量;2、综合与实践:制作一个无盖长方形盒子.用一张正方形的纸片制成一个如图的无盖长方体纸盒.如果我们按照如图所示的方式,将正方形的四个角减掉四个大小相同的小正方形,然后沿虚线折起来,就可以做成一个无盖的长方体盒子.(1)如果原正方形纸片的边长为a cm,剪去的正方形的边长为b cm,则折成的无盖长方体盒子的高为________cm,底面积为_______cm2,请你用含a,b的代数式来表示这个无盖长方体纸盒的容积__________cm3;(2)如果a=20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,折成的无盖长方体的容积分别是多少?请你将计算的结果填入下表;剪去正方形的边长/cm12345678910容积/cm3324512__________500384252128360(3)观察绘制的统计表,你发现,随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积如何变化?( )A.一直增大 B.一直减小C.先增大后减小 D.先减小后增大(4)分析猜想当剪去图形的边长为__________时,所得的无盖长方体的容积最大,此时无盖长方体的容积是____________cm3.(5)对(2)中的结果,你觉得表格中的数据还有什么要改进的地方吗?3、某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.(1)当月用电量不超过200时,y与x的函数关系式为 ,当月用电量超过200度时,y与x的函数关系式为 .(2)小新家十月份用电量为160度,求本月应交电费多少元?(3)小明家十月份交纳电费117元,求本月用电多少度?4、在计算器上按下面的程序操作:填表:x130101y 显示的计算结果y是输入数值x的函数吗?为什么?5、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,按要求完成下列各小题:(1)写出解析式中a、b的值,____________、____________;x…012345……1236321…(2)在图中补全该函数图象,并写出这个函数的一条性质_____________;(3)已知函数的图象如图所示,结合图象,直接写出的解集.(近似值保留一位小数,误差不超过0.2) -参考答案-一、单选题1、B【解析】【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;故选B.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.2、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.故选:D.【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.3、B【解析】【分析】根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.【详解】解:由题意和图象可知, A、B港口相距400km,故①正确;∵甲船的速度是乙船的1.25倍, ∴乙船的速度为:100÷1.25=80(km/h), ∵乙船的速度为80km/h, ∴400÷80=(400+)÷100-1, 解得:=200km, 故②错误; ∵甲船4个小时行驶了400km, ∴甲船的速度为:400÷4=100(km/h), 故③正确; 乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km), 故④错误.故选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.4、B【解析】【分析】根据图象中的数据逐项判断即可解答.【详解】解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,故选:B.【点睛】本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.5、D【解析】【分析】根据题意和图象中的数据可以判断各个小题中的说法是否正确,从而可以解答本题.【详解】解:由图可得,两人前行过程中的速度为4000÷20=200(米/分),故①正确;m的值是20−5=15,n的值是200×15=3000,故②正确;爸爸返回时的速度为:3000÷(45−15)=100(米/分),则东东开始返回时与爸爸相距:4000−3000+100×5=1500(米),故③正确;运动18分钟时两人相距:200×(18−15)+100×(18−15)=900(米),东东返回时的速度为:4000÷(45−20)=160(米/分),则运动30分钟时,两人相距:1500−(160−100)×(30−20)=900米,故④正确,∴结论中正确的是①②③④.故选:D.【点睛】本题考查了从函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6、C【解析】【分析】(1)把,代入 求出、,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.【详解】把,代入 得:,画出函数图像如图所示:当时,;当时,,故①错误;由图像可得出:②③正确.故选:C.【点睛】函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.7、B【解析】【分析】根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.【详解】解:A、当时,,不满足,故此选项不符合题意;B、当时,,满足,当时,,满足,当时,,满足,当时,,满足,故此选项符合题意;C、当时,,不满足,故此选项符合题意;D、当时,,不满足,故此选项符合题意;故选B.【点睛】本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.8、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.9、C【解析】【分析】根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.【详解】解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错误;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,故②正确;汽车在第4小时到6小时的速度是=千米/时,故③正确;由图象可知,当t=9时,s=0,汽车出发后9小时返回原地,故④正确.∴正确的说法有:②③④,共有3个.故选:C.【点睛】此题考查了函数图像问题,解题的关键是正确分析题目中信息进行求解.10、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A.【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.二、填空题1、 【解析】【分析】从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,进而求解.【详解】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,,则,在Rt△ABH中,,故答案为:,.【点睛】本题考查的是动点问题的函数图象,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.2、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,,解得,,故答案为:.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.3、 自变量 函数 取值范围【解析】略4、【解析】【分析】根据表格可得当下降高度为50时,弹跳高度为25,当下降高度为80时,弹跳高度为40,由此可得前后弹跳高度差为15,高度差为30,进而问题可求解.【详解】解:由表格可任取两个值可得高度差与弹跳差的比值为:,∴;故答案为.【点睛】本题主要考查函数关系,解题的关键是根据表格找准等量关系即可.5、【解析】【分析】根据二次根式有意义的条件即可求得自变量x的取值范围【详解】解:故答案为:【点睛】本题考查了函数解析式,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.三、解答题1、(1)100℃;(2)温度,时间,时间,温度【解析】【分析】(1)根据表格中的数据求解即可;(2)观察表格可知,反映的是温度随时间的变化而变化由此即可得到答案.【详解】解:(1)观察表格可知:第8分钟时水的温度为100℃;(2)观察表格可知反映的是温度随着时间的变化而变化的,时间是自变量,温度是因变量;故答案为(1)100℃;(2)温度,时间,时间,温度.【点睛】本题主要考查了用表格表示变量之间的关系,解题的关键在于能够熟练掌握自变量与因变量的定义.2、 (1)b;(a-2b)2;b(a-2b)2(2)588;576(3)C(4)3;588(5)表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位【解析】【分析】(1)根据截去的小正方形边长,得出无盖长方体盒子的高为bcm,然后求出底面边长,再求底面积,和体积即可;(2)根据截去的边长,求出底面边长,再求出无盖的长方体盒子的体积即可;(3)根据表格的信息可得随着减去的小正方形的边长的增大,得出无盖长方体盒子的容积变化规律;(4)根据表格得出截去小正方形边长为整数3时,体积最大,计算即可;(5)根据精确度要求越高,无盖长方体盒子的容积会更大些.(1)解:无盖长方体盒子的高就是截去的小正方形边长,无盖长方体盒子的高为bcm,底面边长(a-2b)cm,底面面积为(a-2b)2cm2, 做成一个无盖的长方体盒子的体积为b(a-2b)2cm3,故答案为:b;(a-2b)2;b(a-2b)2.(2)解:当b=3cm, a-2b=20-6=14cm,b(a-2b)2=3×142=588cm3,当b=4,a-2b=20,8=12cm,b(a-2b)2=4×122=576cm3,故答案为:588;576.(3)解:随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积先变大,再变小.故选择C.(4)根据无盖长方体盒子的容积的变化,截去的正方形边长在3cm时,无盖长方体盒子的容积最大588cm3.故答案为3,588.(5)根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;当x=3,5时,b(a-2b)2=3.5×(20-2×3.5)2=591.5cm3,当时,b(a-2b)2=3.25×(20-2×3.25)2=592.3125cm3,当时,b(a-2b)2=3.375×(20-2×3.375)2=592.5234375cm3,当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3.因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.【点睛】本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.3、(1),;(2)88;(3)【解析】【分析】(1)时,电费就是0.55乘以相应度数;时,电费超过200的度数;(2)把160代入得到的函数求解即可;(3)把117代入得到的函数求解即可.【详解】解:(1)当时,与的函数解析式是;当时,与的函数解析式是,即;故答案为:,(2)(元)答:小明家4月份应交电费145元.(3)因为小明家5月份的电费超过110元,所以把代入中,得.答:小明家5月份用电210度.【点睛】本题考查一次函数的应用,正确的列出函数关系是解题的关键.4、7,11,,5,207,,y是x的函数,符合函数定义.【解析】【分析】根据程序分别求出对应的y的值,再根据函数的定义判断即可.【详解】解:当x=1时,y=1×2+5=7;当x=3时,y=3×2+5=11;当x=-4时,y=(-4)×2+5=-3;当x=0时,y=0×2+5=5;当x=101时,y=101×2+5=207;当x=-5.2时,y=3×2+5=-5.4;给出x的一个值,有唯一的y值与之对应,所以显示的计算结果y是输入数值x的函数.故答案为:7;11;-3;5;207;-5.4.【点睛】本题主要考查了函数的定义,注意:如果y是x的函数,则给出x的一个值,有唯一的y值与之对应.5、(1),;(2)画图见解析,当时随增大而增大(答案不唯一);(3)或.【解析】【分析】(1)用待定系数法求解函数解析式,即可求得,;(2)补全图象,并观察图象,当时,随增大而增大(答案不唯一);(3)根据图象两函数交点,即可求得不等式的解集.【详解】解:(1)将,代入函数得,解得:,故答案为:,;(2)补全该函数如下,由图象可得,当时随增大而增大(答案不唯一);(3)由(1)可得,观察图象可知,的解集为或.【点睛】本题考查利用待定系数法求得函数中系数的值,函数的性质,利用函数图象解不等式,其中利用函数图象解不等式是解题关键.
相关试卷
这是一份2021学年第二十章 函数综合与测试课时训练,共23页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共20页。试卷主要包含了函数的图象如下图所示,函数中,自变量x的取值范围是,在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共23页。