搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版八年级数学下册第十九章平面直角坐标系专题练习练习题(无超纲)

    精品试题冀教版八年级数学下册第十九章平面直角坐标系专题练习练习题(无超纲)第1页
    精品试题冀教版八年级数学下册第十九章平面直角坐标系专题练习练习题(无超纲)第2页
    精品试题冀教版八年级数学下册第十九章平面直角坐标系专题练习练习题(无超纲)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第十九章 平面直角坐标系综合与测试当堂检测题

    展开

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试当堂检测题,共24页。试卷主要包含了已知点和点关于轴对称,则的值为,如果点P,在下列说法中,能确定位置的是等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、点向上平移2个单位后与点关于y轴对称,则       ).A.1 B. C. D.2、如图,树叶盖住的点的坐标可能是(   )A. B. C. D.3、在平面直角坐标系中,点P(-2,3)在(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、已知点和点关于轴对称,则的值为(       A.1 B. C. D.5、点在第(     )象限.A.一 B.二 C.三 D.四6、如图是北京地铁部分线路图.若崇文门站的坐标为,北海北站的坐标为,则复兴门站的坐标为(     A. B. C. D.7、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(ab)平移后的对应点的坐标为(       A.(ab) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)8、如果点P(﹣5,b)在第二象限,那么b的取值范围是(  )A.b≥0 B.b≤0 C.b<0 D.b>09、在下列说法中,能确定位置的是(     A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号10、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、点P(5,﹣4)到x轴的距离是___.2、已知点A(a,-3)与点B(3,b)关于y轴对称,则a+b=_____________________.3、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.4、在平面直角坐标系中,等腰直角和等腰直角的位置如图所示,顶点轴上,.若点的坐标为,则线段的长为__________.5、点关于y轴的对称点的坐标为________.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,已知点,连接AB,将AB向下平移5个单位得线段CD,其中点A的对应点为点C(1)填空:点C的坐标为______,线段AB平移到CD扫过的面积为______;(2)若点Py轴上的动点,连接PD①如图(1),当点Py轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由;②当PD将四边形ACDB的面积分成2:3两部分时,求点P的坐标.2、如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,点B坐标为,点C的坐标为(1)根据上述条件,在网格中画出平面直角坐标系(2)画出关于x轴对称图形(3)点A绕点B顺时针旋转90°,点A对应点的坐标为______.3、ABC在平面直角坐标系中的位置如图所示,已知A(﹣1,3),B(﹣4,2),C(﹣2,﹣2),将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,点ABC的对应点分别为DEF(1)在图中画出DEF,并直接写出点E的坐标;(2)判断线段ACDF的关系为     (3)连接BDCD,并直接写出BCD的面积.4、如图所示,在平面直角坐标系中,的顶点坐标分别是(1)已知点关于轴的对称点的坐标为,求的值;(2)画出,且的面积为            (3)画出与关于轴成对称的图形,并写出各个顶点的坐标.5、如图,在平面直角坐标系中,ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).(1)在图中画出ABC关于y轴对称的图形ABC′;并写出点B′的坐标.(2)在图中x轴上作出一点P,使PA+PB的值最小. -参考答案-一、单选题1、D【解析】【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点∵点与点关于y轴对称,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.2、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,符合条件.故选:B.【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.3、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.4、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出的值,进而得出答案.【详解】解答:解:和点关于轴对称,故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出的值是解题关键.5、D【解析】【分析】第一象限内点的坐标符号为,第二象限内点的坐标符号为,第三象限内点的坐标符号为,第四象限内点的坐标符号为,根据符号特点可直接判断.【详解】解:点在第四象限.故选:D【点睛】本题考查的是坐标系内各象限内点的坐标特点,掌握“四个象限内点的坐标符号”是解本题的关键.6、B【解析】【分析】根据已知点坐标确定直角坐标系,即可得到答案.【详解】由题意可建立如图所示平面直角坐标系,则复兴门站的坐标为故选:【点睛】此题考查了平面直角坐标系中点坐标特点,由点坐标确定直角坐标系,由坐标系得到点坐标,属于基础题型.7、D【解析】【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(ab)平移后的对应点的坐标.【详解】解:∵△ABO′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,∴△ABO内任意点P(ab)平移后的对应点P′的坐标为(a+4,b+2).故选:D.【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.8、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.9、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.10、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.二、填空题1、4【解析】【分析】根据点的纵坐标的绝对值就是点到x轴的距离即可求解【详解】P(5,﹣4)到x轴的距离是4故答案为:4【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.2、【解析】【分析】由点A(a,-3)与点B(3,b)关于y轴对称,可得从而可得答案.【详解】解:A(a,-3)与点B(3,b)关于y轴对称, 故答案为:【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.3、【解析】【分析】先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为故答案为:【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.4、【解析】【分析】如图,过点作一条垂直于轴的直线,过点交点为,过点交点为;有题意可知,由D点坐标可知的长度,,进而可得结果.【详解】解:如图, 过点作一条垂直于轴的直线,过点交点为,过点交点为中, D点坐标可知故答案为:【点睛】本题考查了全等三角形的判定与性质,坐标系中点的坐标等知识.解题的关键是找出所求线段的等价线段的值.5、【解析】【分析】根据关于y轴对称的两个点,纵坐标相等,横坐标互为相反数求解即可【详解】解:点关于y轴的对称点的坐标为故答案为:【点睛】本题考查了关于坐标轴对称的点的特征,掌握关于y轴对称的两个点,纵坐标相等,横坐标互为相反数是解题的关键.三、解答题1、 (1)          (2)①SPECSECD,理由见解析;②点P坐标为(0,5)或(0,).【解析】【分析】(1)先根据线段向下平移5个单位可得A的纵坐标减去5,横坐标不变,可得的坐标,再求解的长度,乘以平移距离即可得到平移后线段AB扫过的面积;(2)①先求出PF=2,再用三角形的面积公式得出SPECCESECD=2CE,即可得出结论;②分DP交线段AC和交AB两种情况,利用面积之差求出△PCE和△PBE,最后用三角形面积公式即可得出结论.(1)解:AB向下平移5个单位得线段CD 线段AB平移到CD扫过的面积为: 故答案为:(2)①如图1,过P点作PFACF由平移知,轴,A(2,4),PF=2,由平移知,CDAB=4,SPECCEPFCE×2=CESECDCECDCE×4=2CESECD=2SPEC即:SPECSECD②(ⅰ)如图2,当PD交线段ACE,且PD将四边形ACDB分成面积为2:3两部分时,连接PC,延长DCy轴于点M,则M(0,﹣1),OM=1,连接AC,则SACDS方形ABDC=10,PD将四边形ACDB的面积分成2:3两部分,SCDES矩形ABDC×20=8,由①知,SPECSECD×8=4,SPCDSPEC+SECD=4+8=12,SPCDCDPM×4PM=12,PM=6,POPMOM=6﹣1=5,P(0,5).(ⅱ)如图3,当PDAB于点FPD将四边形ACDB分成面积为2:3两部分时,连接PB,延长BAy轴于点G,则G(0,4),OG=4,连接AC,则SABDS方形ABDC=10,PD将四边形ACDB的面积分成2:3两部分,SBDES矩形ABDC×20=8,SBDEBDBE×5BE=8,BEP点作PHBDDB的延长线于点HB(6,4),PH=6SPDBBD×PH×5×6=15,SPBESPDBSBDE=15﹣8=7,SPBEBEPGPG=7,PGPOPG+OG+4=P(0,),即:点P坐标为(0,5)或(0,).【点睛】此题是几何变换综合题,主要考查了平移的坐标变换,长方形的性质,坐标与图形,三角形的面积公式,清晰的分类讨论的思想是解本题的关键.2、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】(1)根据点B坐标为,点C的坐标为确定原点,再画出坐标系即可;(2)画出三角形顶点的对称点,再顺次连接即可;(3)画出旋转后点的位置,写出坐标即可.(1)解:坐标系如图所示,(2)解:如图所示,就是所求作三角形;(3)解:如图所示,点A绕点B顺时针旋转90°的对应点为,坐标为(2,2);故答案为:(2,2)【点睛】本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标.3、 (1)见解析,点E的坐标为(0,1)(2)平行且相等(3)BCD的面积为14【解析】【分析】(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为,再顺次连接,即可求解;(2)根据线段ACDF是平移前后的对应线段,即可求解;3)以 为底,则高为4,即可求解.(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为如图所示,△DEF即为所求;(2)线段ACDF的关系为平行且相等,理由如下:将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF线段ACDF是对应线段,∴线段ACDF平行且相等;(3)SBCD×7×414【点睛】本题主要考查了图形的变换——平移,熟练掌握图形平移前后对应段相等,对应角相等是解题的关键.4、(1);(2)作图见详解;13;(3)作图见详解;【解析】【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定ABC点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定ABC三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.【详解】解:(1)∵点关于x轴的对称点P的坐标为(2)如图:即为所求,故答案为:13;(3)如图:ABC点关于y轴的对称点为:,顺次连接,即为所求【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.5、(1)作图见解析,点B′的坐标为(-4,1);(2)见解析【解析】【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A″,再连接AB,与x轴的交点即为所求.【详解】解:(1)如图所示,△ABC′即为所求.B′的坐标为(-4,1);(2)如图所示,点P即为所求.【点睛】本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数. 

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共26页。试卷主要包含了在平面直角坐标系中,将点A等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题,共25页。试卷主要包含了在平面直角坐标系中,点A,若点在轴上,则点的坐标为等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共19页。试卷主要包含了已知点A,点关于轴的对称点是,在平面直角坐标系中,点,在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A,在平面直角坐标系中,点在等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map