冀教版八年级下册第二十章 函数综合与测试巩固练习
展开冀教版八年级数学下册第二十章函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )
A., B.,
C., D.,
2、如图所示,下列各曲线中表示是的函数的有()
A.1个 B.2个 C.3个 D.4个
3、下列图象表示y是x的函数的是( )
A. B. C. D.
4、速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:
①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是( )
A.①②③ B.①④ C.①② D.①③
5、下列各曲线中,不表示y是x的函数的是( )
A. B.
C. D.
6、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )
A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系
B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系
C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系
D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系
7、下列函数中,自变量的取值范围选取错误的是( )
A.y=2x2中,x取全体实数 B.y=中,x取x≠-1的实数
C.y=中,x取x≥2的实数 D.y=中,x取x≥-3的实数
8、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )
A.①②④ B.①②③ C.①③④ D.②③④
9、EF是BC的垂直平分线,交BC于点D,点A是直线EF上一动点,它从点D出发沿射线DE方向运动,当减少时,增加,则y与x的函数表达式是( )
A. B. C. D.
10、甲、乙两只气球分别从不同高度同时匀速上升30min,气球所在的位置距离地面的高度h(单位:m)与气球上升的时间t(单位:min)之间的函数关系式如图所示.下列说法正确的是( )
A.10min时,两只气球都上升了30m B.乙气球的速度为3m/min
C.30min时,乙气球离地面的高度为60m D.30min时,甲乙两只气球的高度差为20m
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小亮从学校步行回家,图中的折线反映了小亮离家的距离S(米)与时间t(分钟)的函数关系,根据图象提供的信息,给出以下结论:①他在前12分钟的平均速度是70米/分钟;②他在第19分钟到家;③他在第15分钟离家的距离和第24分钟离家的距离相等;④他在第33分钟离家的距离是720米.其中正确的序号为 ___.
2、在中,自变量的取值范围是______.
3、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.
4、定义:用_______来表示函数关系的方法叫做解析式法.
特点:解析式法简单明了,能够准确的反映整个变化过程中自变量与函数之间的对应关系,但有些实际问题中的函数关系,不能用解析式表示,如气温与时间的函数关系.
5、判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有_________确定的值与它对应.
三、解答题(5小题,每小题10分,共计50分)
1、在某火车站托运物品时,不超过的物品需付2元,以后每增加(不足按计)需增加托运费0.5元,设托运(p为整数)物品的费用为c元,试写出c的计算公式.
2、植物呼吸作用受温度影响很大,观察如图,回答问题:
(1)此图反映的自变量和因变量分别是什么?
(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?
(3)要使豌豆呼吸作用最强,应控制在什么温度左右?
3、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 6 | a | 0 | ﹣1.5 | ﹣2 | ﹣1.5 | 0 | 2 | 0 | b | … |
(1)表中a= ;b= ;
(2)根据表中的数据画出该函数的大致图象,并根据函数图象写出该函数的一条性质.
(3)已知直线的图象如图所示,结合你所画的函数图象,当y1>y2时直接写出x的取值范围.(保留1位小数,误差不超过0.2)
4、某拖拉机的油箱最多可装千克油,装满油后犁地,平均每小时耗油千克,解答下列问题:
(1)写出油箱中剩油(千克)与犁地时间(小时)之间的函数关系式;
(2)求拖拉机工作小时分钟后,邮箱中的剩油量.
5、下列各题中分别有几个变量?你能将其中某个变量看成另一个变量的函数吗?若能,请指出自变量的取值范围.
(1)
(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行,一般地有经验公式,其中表示刹车前汽车的速度(单位:).
(3)在国内投寄到外埠质量为以内的普通信函应付邮资如下表:
信件质量 | |||||
邮资/元 | 1.20 | 2.40 | 3.60 | 4.80 | 6.00 |
-参考答案-
一、单选题
1、B
【解析】
【分析】
由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
【详解】
解:由图象可知,当x>0时,y<0,
∵,
∴ax<0,a<0;
x=b时,函数值不存在,
即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
∴b>0.
故选:B.
【点睛】
本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
2、C
【解析】
【分析】
由题意依据函数的定义对各个函数图形进行分析判断即可得出答案.
【详解】
解:由对于的每一个确定的值,都有唯一确定的值与其对应可知,
①、②、③表示是的函数,④不构成函数关系,共有3个.
故选:C.
【点睛】
本题考查函数的识别,注意掌握在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数.
3、D
【解析】
【分析】
根据函数的定义,按照一一对应的原则去判断即可. 当任意一个都有唯一的一个与之对应,则称是的函数.
【详解】
当任意一个都有唯一的一个与之对应,则称是的函数.
由图象可知:A,B,C选项都不符合题意,
D选项符合题意.
故选D.
【点睛】
本题考查了函数的图像表示法,正确理解变量之间的一一对应思想是解题的关键.
4、D
【解析】
【分析】
①利用“速度=路程÷时间”可求出两车的速度差,结合快车的速度即可求得a值,即可判断①;②利用“时间=两车之间的距离÷两车速度差”可得出b值,由s不确定可得出b值不确定即可判断②;③利用“两车第二次相遇的时间=快车转向时的时间+两车之间的距离÷两车的速度之和”可得出c值,即可判断③;④由②的结论结合s=40可得出b值,即可判定④.
【详解】
解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),
∴a=100﹣40=60,结论①正确;
②两车第一次相遇所需时间=(h),
∵s的值不确定,
∴b值不确定,结论②不正确;
③两车第二次相遇时间为b+2+=b+(h),
∴c=b+,结论③正确;
④∵b=,s=40,
∴b=1,结论④不正确.
故选:D.
【点睛】
本题主要考查了一次函数的应用,掌握数形结合思想成为解答本题的关键.
5、D
【解析】
【分析】
根据函数的意义进行判断即可.
【详解】
解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.
故选:D.
【点睛】
本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.
6、D
【解析】
【分析】
根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可
【详解】
解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;
B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;
C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;
D、∵一个正数x的平方根是y,
∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;
故选D.
【点睛】
本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.
7、D
【解析】
【分析】
根据分式的分母不能为0、二次根式的被开方数的非负性即可得.
【详解】
解:A、中,取全体实数,此项正确;
B、,即,
中,取的实数,此项正确;
C、,
,
中,取的实数,此项正确;
D、,且,
,
中,取的实数,此项错误;
故选:D.
【点睛】
本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.
8、A
【解析】
【分析】
由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.
【详解】
解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;
②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;
③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;
④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;
所以正确的是①②④.
故选:A.
【点睛】
本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.
9、B
【解析】
【分析】
根据垂直平分线的性质可得,,根据题意列出函数关系式即可
【详解】
EF是BC的垂直平分线,
是的角平分线
设,即
当减少时,则,增加,则
故选B
【点睛】
本题考查了垂直平分线的性质,三角形内角和定理,列函数关系式,掌握垂直平分线的性质,等腰三角形三线合一是解题的关键.
10、D
【解析】
【分析】
根据题意和函数中的数据,可以计算出甲、乙两只气球的速度,然后即可判断各个选项中的说法是否正确.
【详解】
解:由图象可得,
10min时,甲气球上升了m,乙气球上升了−=20(m),故选项A错误;
甲气球的速度为:÷=(m/ min),
乙气球的速度为:(−)÷=(m/ min),故选项B错误;
30min时,乙气球距离地面的高度是+(m),故选项C错误;
则30min时,两架无人机的高度差为:()−(+)=20(m),故选项D正确;
故选:D.
【点睛】
本题考查一次函数的应用,计算出甲、乙两架无人机的速度是解答本题的关键,利用数形结合的思想解答.
二、填空题
1、①④
【解析】
【分析】
由图象可以直接得出前12分钟小亮的平均速度,从而得出①正确;由图象可知从12分到19分小亮又返回学校,可以判断②错误;分别求出小亮第15分和第24分离家距离可以判断③错误;求出小亮33分离家距离,可以判断④正确.
【详解】
解:由图象知,前12分中的平均速度为:(1800−960)÷12=70(米/分),
故①正确;
由图象知,小亮第19分中又返回学校,
故②错误;
小亮在返回学校时的速度为:(1800−960)÷(19−12)=840÷7=120(米/分),
∴第15分离家距离:960+(15−12)×120=1320,
从21分到41分小亮的速度为:1800÷(41−21)=1800÷20=90(米/分),
∴第24分离家距离:1800−(24−21)×90=1800−270=1530(米),
∵1320≠1530,
故③错误;
小亮在33分离家距离:1800−(33−21)×90=1800−1080=720(米),
故④正确,
故答案为:①④.
【点睛】
本题考查函数图像,关键是利用已知信息和图象所给的数据分析题意,依次解答.
2、x≥3
【解析】
【分析】
根据二次根式的性质,被开方数大于或等于0,可以求出的范围.
【详解】
解:中,
所以,
故答案是:.
【点睛】
本题考查了求函数自变量的范围,解题的关键是掌握一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
3、1760
【解析】
【分析】
根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.
【详解】
解:小明离家2分钟走了160米,
∴小明初始速度为160÷2=80米/分;
小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;
小明在家换衣服3分钟时间,妈妈走了40×3=120米,
设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,
则有160t=1200+120+40t,
∴t=11,
∴小明离家距离为11×160=1760米.
故答案为:1760米.
【点睛】
本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.
4、解析式
【解析】
略
5、唯一
【解析】
略
三、解答题
1、(p为正整数).
【解析】
【分析】
由于p是整数,则可求c=0.5p+1.5.
【详解】
解:∵p是整数,
∴c=2+0.5(p-1)=0.5p+1.5.
【点睛】
本题考查函数的解析式;理解题意,能够根据实际问题列出正确的函数是解题的关键.
2、(1)此图反映的自变量和因变量分别是温度和呼吸作用强度;(2)温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右)
【解析】
【分析】
(1)根据函数图象即可得到结论;
(2)根据图象中提供的信息即可得到结论;
(3)根据图象中提供的信息即可得到结论.
【详解】
解:(1)此图反映的自变量是温度,因变量是呼吸作用强度;
(2)由图象知,温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;
(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右).
【点睛】
本题考查了常量和变量,函数图象,正确的识别图象是解题的关键.
3、 (1)2.5;﹣2
(2)见解析
(3)x<﹣2或1.5<x<5
【解析】
【分析】
(1)根据解析式计算即可;
(2)利用描点法画出函数图象,观察图象可得函数的一条性质;
(3)根据图象即可求解.
(1)
解:当x=﹣3时,y1=×(﹣3)2﹣2=2.5,
∴a=2.5,
当x=5时,y1=2﹣2×|5﹣3|=﹣2,
∴b=﹣2,
故答案为:2.5,﹣2;
(2)
解:画出函数图象如图所示:
由图象得:x<0时,y随x的增大而减小;
(3)
画出直线的图象如图所示,
由图象可知,当y1>y2时,x的取值范围为:x<﹣2或1.5<x<5.
【点睛】
本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.
4、(1);(2)29升
【解析】
【分析】
(1)设犁地时间t小时,然后根据某拖拉机的油箱最多可装56千克油,装满油后犁地,平均每小时耗油6千克,进行求解即可;
(2)根据拖拉机工作4小时30分钟即,把代入(1)中所求进行求解即可.
【详解】
解:(1)由题意得:;
(2)∵,拖拉机工作时间为4小时30分钟即,
∴升,
∴邮箱中的剩油量为29升.
【点睛】
本题主要考查了列函数关系式和代数式求值,解题的关键在于能够根据题意正确列出油箱中剩油Q(千克)与犁地时间t(小时)之间的函数关系式.
5、(1)(2)(3)都含有两个变量;(1)可将温度看成时间(可用字母表示)的函数,时间的取值范围是:;(2)可将看成的函数,的取值范围是:;(3)可将看成的函数,的取值范围是:
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案,结合图像分析出自变量的取值范围即可;
【详解】
(1)(2)(3)都含有两个变量;
(1)可将温度看成时间(可用字母表示)的函数,时间的取值范围是:;
(2)可将看成的函数,的取值范围是:;
(3)可将看成的函数,的取值范围是:
【点睛】
本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
冀教版八年级下册第二十章 函数综合与测试随堂练习题: 这是一份冀教版八年级下册第二十章 函数综合与测试随堂练习题,共25页。试卷主要包含了在函数中,自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
2020-2021学年第二十章 函数综合与测试精练: 这是一份2020-2021学年第二十章 函数综合与测试精练,共21页。试卷主要包含了小明家,函数y=的自变量x的取值范围是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试课堂检测: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课堂检测,共25页。试卷主要包含了如图,某汽车离开某城市的距离y等内容,欢迎下载使用。